• Title/Summary/Keyword: Tool vibration

Search Result 877, Processing Time 0.028 seconds

자동회귀-이동평균(ARMA) 모델에의한 초음파 진동 절삭 공정의 해석

  • 최인휴;김정두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.160-165
    • /
    • 1993
  • The cutting mechanism of ultrasonic vibration machining is characterized as two phases, that is an impact at the cutting edge and a reduction of cutting force due to non-contact interval between tool and workpiece. In this paper, in order to identfy cutting dynamics of a system with ultrasonically vibrated cutting tool, an ARMA modelling is performed on experimental cutting force signals which have a dominant effect on cutting dynamics. The aim of this study is, through Dynamic Data System methodology, to find the inherent characteristics of an ultrasonic vibration cutting process by considering natural frequencyand damping coefficient. Surface roughness and stability of cutting process under ultrasonic vibration are also considered

Effect of Material Flow Direction on the Replication Characteristics of the Ultrasonic Patterning Process (초음파 패턴성형시 유동방향 구속에 따른 미세패턴의 성형특성 고찰)

  • Seo, Y.S.;Lee, K.Y.;Park, K.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.119-125
    • /
    • 2012
  • The present study addresses a direct patterning process on a plastic film using ultrasonic vibration energy. In this process, a tool horn containing micro-patterns is attached to an ultrasonic power supply, and is used with ultrasonic vibration to replicate micro-patterns on the surface of a plastic film. To improve the replication characteristics of the micro-patterns, the effect of the die shape of the ultrasonic patterning process was investigated with respect to the flow direction control. Finite element analyses were performed to predict the flow characteristics of the polymer with variations in die design parameters. Experiments were conducted using the optimally-designed die, from which it was possible to attain much improved pattern replication.

Structural Design for Performance Improvement of Line Center (라인센터의 성능향상을 위한 구조설계)

  • Cheong, Seon-Hwan;Choi, Seong-Dae;Kweon, Hyun-Kyu;Choi, Un-Don;Shon, Jae-Yool
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.76-83
    • /
    • 2003
  • Recently, the field of the engineering has been studied about optimum design continuously. Verified data by comparison with simulation and dynamic characteristic analysis enables the design of a machine tool to be modified easily and effectively concerning to the mode shape of the vibration. Especially, BC-500 Line Center has got some problems causing vibration which mainly come from Column and ATC part. So it is necessary to solve those problems by the two kinds of method such as changing structural design and reinforcing with ribs. In this paper, column and ATC part of BC-500 Line center are modified by an optimum design by the analysing method of FEM to avoid vibration. As a result, a more stable machine tool was designed by this simulation as optimum condition.

  • PDF

Cutting Vibration Monitoring using a Spindle Displacement Sensor in Turning (주축 변위 센서를 이용한 선삭 중의 절삭 진동 측정)

  • Kim IlHae;Kim JinHyun;Park Man-Jin;Kim Jong-Hyuk;Yang Hee-Nam;Jang. DongYoung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.55-61
    • /
    • 2004
  • Chatter monitoring is also important for realizing an unmanned machining system. while many researches were done on this area, it is still a difficult job to detect very small amplitude amount of chattering. A monitoring system using a capacitive spindle displacement sensor was developed to monitor cutting vibration in turning in this research. The variance of the measured spindle displacement signals using the developed sensor was calculated and utilized to quantify the small vibration in machining. The results were compared with variance obtained using a tool dynamometer. The result showed that the developed system could be utilized in monitoring the subtle changes of cutting vibrations with high sensitivity confidence.

CUTTING VIBRATION MONITORING USING A SPINDLE DISPLACEMENT SENSOR IN TURNING (주축 변위 센서를 이용한 선삭 중의 절삭 진동 측정)

  • 김일해;김진현;장동영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.516-522
    • /
    • 2003
  • Monitoring chattering is also important for realizing an unmanned machining system While many researches were done on this area, it is still a difficult job to detect very small amplitude amount of chattering. A monitoring system using a capacitive spindle displacement sensor was developed to monitor cutting vibration in turning in this research. The variance of the measured spindle displacement signals using the developed sensor was calculated and utilized to quantity the small vibration in machining. The results were compared with variance obtained using a tool dynamometer. The result showed that the developed system could be utilized in monitoring the subtle changes of cutting vibrations with high sensitivity confidence.

  • PDF

Micro Hole Machining for Ceramics ($Al_2O_3$) Using Ultrasonic Vibration (초음파 진동을 이용한 세라믹 소재의 마이크로 홀 가공)

  • 박성준;이봉구;최헌종
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.104-111
    • /
    • 2004
  • Ultrasonic machining is a non-thermal, non-chemical, md non-electorial material removal process, and thus results in minimum modifications in mechanical properties of the brittle material during the process. Also, ultrasonic machining is a non-contact process that utilize ultrasonic vibration to impact a brittle material. In this research characteristics of micro-hole machining for brittle materials by ultrasonic machining(USM) process have been investigated. And the effect of ultrasonic vibration on the machining conditions is analyzed when machining fir non-conductive brittle materials using tungsten carbide tools with a view to improve form and machining accuracy.

Study on Configuration Design Sensitivity of Noise & Vibration (소음/진동의 컨피규레이션 설계 민감도 연구)

  • 왕세명;기성현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.192-198
    • /
    • 1997
  • In the concurrent engineering, the CAD-based design model is necessary for multidisciplinary analysis and for computer-aided manufacturing (CAM). A shape and configuration design velocity field computation of structure has been developed using a computer-aided design (CAD) tool, Pro/ENGINEER. The design Parameterization with CAD tool is to characterize the change in dimensions and movements of geometric control points that govern the shape/orientation of the structural boundary. The boundary velocity is obtained by using a CAD-based finite difference method and the domain velocity field is obtained from finite element analysis (FEA) using the boundary displacement method. In this paper, the continuum configuration DSA for NVH problem, which requires the shape velocity field and the orientation velocity field at the same time, is developed using linear shape functions. For validation of continuum design sensitivity coefficients, design sensitivity coefficients are compared with the coefficients computed using by the finite difference method.

  • PDF

Vibration Characteristics and Its Propagation Path Analysis of an Electric Drill (전동드릴의 진동특성 및 전파경로 해석)

  • 조윤수;김도현;최연선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.422-430
    • /
    • 2001
  • An electric drill is a handy tool used in a machine shop, which consists of motor, gear, bearing, shaft, and case, i.e., a gear driving system. Low level vibration and noise of the electric drill can bring the assurance of the quality and reliability of the machine. The vibration sources of the electric drill should be investigated for the reduction of the vibration and noise of the system. Through the experiments in laboratory and the various signal processing procedure for the measured vibration and sound signals, the characteristics of the vibration of the electric drill are investigated. And its propagation path is sought using partial coherence function.

  • PDF

Modal Analysis of an Ultrasonic Tool Horn for RFID TAG Micro-pattern Forming (RFID TAG 미세패턴 성형을 위한 공구혼 진동해석)

  • Kim, Kang-Eun;Lee, Bong-Gu;Choi, Sung-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.652-658
    • /
    • 2016
  • In this paper, the theoretical research and simulation using the Finite Element Method (FEM) to design and form a micro-pattern for an ultrasonic horn is described. The present method is based on an initial design estimate obtained by FEM analysis. The natural and resonant frequencies required for the ultrasonic tool horn used for forming the fine pattern were predicted by finite element analysis. FEM analysis using ANSYS S/W was used to predict the resonant frequency for the optimum technical design of the ultrasonic horn vibration mode shape. When electrical power is supplied to the ultrasonic transducer, it is converted into mechanical movement energy, leading to vibration. The RFID TAG becomes the pattern formed on the insulating sheet by using the longitudinal vibration energy of the ultrasonic tool horn. The FEM analysis result is then incorporated into the optimal design and manufacturing of the ultrasonic tool horn.

Adaptive feedrate interpolator for NURBS curve (NURBS 가공을 위한 적응이송속도 보간기)

  • 마르첸코티혼;백대균;고태조;김희술
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.94-99
    • /
    • 2002
  • Increasing demands on precision machining of 3D free-form surface have necessitated the tool smoothly varying feedrates. This paper presents on of algorithm for adaptive feedrate on NURBS curve. Since the algorithm for calculating variable feedrate depends on the curvature of curve, it permits to get constant material tool can be protected un terms of tool chipping vibration, etc.

  • PDF