• Title/Summary/Keyword: Tool Selection

Search Result 822, Processing Time 0.022 seconds

Development of real-time database handling system for turning operation (선삭공정용 데이터베이스의 실시간 운용 시스템의 개발)

  • 이형국;이석희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.170-174
    • /
    • 1990
  • The information with regard to the working range of lathe, cutting tool, cutting condition is managed as Database system for turning operation as one part of CAM system. Data with regard to the working range of lathe, cutting tool, cutting condition are stored by the DBMS(Data Base Management System) and can be added, modified, deleted and retrieved for realtime usages. Data stored in Database system are searched to select the most proper cutting tool and cutting condition with the input data fed from the design stage. Codes in regards to tool shape are displayed on graphic mode for easy selection for user and thus presents a good decision support for tool selection. The system developed in this work is operated by the pull down menu on the IBM PC/AT personal computer, or compatible series.

  • PDF

Selection of Optimal Sensor Locations for Thermal Error Model of Machine tools (공작기계 열오차 모델의 최적 센서위치 선정)

  • 안중용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.345-350
    • /
    • 1999
  • The effectiveness of software error compensation for thermally induced machine tool errors relies on the prediction accuracy of the pre-established thermal error models. The selection of optimal sensor locations is the most important in establishing these empirical models. In this paper, a methodology for the selection of optimal sensor locations is proposed to establish a robust linear model which is not subjected to collinearity. Correlation coefficient and time delay are used as thermal parameters for optimal sensor location. Firstly, thermal deformation and temperatures are measured with machine tools being excited by sinusoidal heat input. And then, after correlation coefficient and time delays are calculated from the measured data, the optimal sensor location is selected through hard c-means clustering and sequential selection method. The validity of the proposed methodology is verified through the estimation of thermal expansion along Z-axis by spindle rotation.

  • PDF

One-Step Selection of Artificial Transcription Factors Using an In Vivo Screening System

  • Bae, Kwang-Hee;Kim, Jin-Soo
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.376-380
    • /
    • 2006
  • Gene expression is regulated in large part at the level of transcription under the control of sequence-specific transcriptional regulatory proteins. Therefore, the ability to affect gene expression at will using sequencespecific artificial transcription factors would provide researchers with a powerful tool for biotechnology research and drug discovery. Previously, we isolated 56 novel sequence-specific DNA-binding domains from the human genome by in vivo selection. We hypothesized that these domains might be more useful for regulating gene expression in higher eukaryotic cells than those selected in vitro using phage display. However, an unpredictable factor, termed the "context effect", is associated with the construction of novel zinc finger transcription factors--- DNA-binding proteins that bind specifically to 9-base pair target sequences. In this study, we directly selected active artificial zinc finger proteins from a zinc finger protein library. Direct in vivo selection of constituents of a zinc finger protein library may be an efficient method for isolating multi-finger DNA binding proteins while avoiding the context effect.

On a New Selection Theorem

  • Kim, Won Kyu
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.7 no.1
    • /
    • pp.47-51
    • /
    • 1994
  • The purpose of this note is to give a new selection theorem which is an essential tool for proving the new kind of existence theorem of the equilibrium price comparable to the Debreu-Gale-Nikaido theorem.

  • PDF

Tool selection problem in flexible manufacturing systems

  • Kato, Kiyoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1553-1556
    • /
    • 1991
  • This paper deals with a problem on the selection of alternative tools in a flexible manufacturing system (FMS) where a lot of tools are required to produce a large variety of product items. An approach using branch and bound method is proposed to minimize a total number of tools required through the optimal use of the alternative tools. In this approach, tools are initially divided into tool subgroups based on graph theory for the purpose of the effective search of the optimal solution. A small example is also presented to highlight the effectiveness of the proposed approach.

  • PDF

A Study on the tool vibration characteristics in inclined surface milling (Ball-end milling 에서의 경사면 가공시의 공구진동 특성에 관한 연구)

  • 조병무;유진호;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.15-20
    • /
    • 2004
  • Inclined surface milling in the mould and die industries is one of the most commonly needed cutting process. For the variety and complexity of cutting characteristics in various cutting condition, it is difficult to select a optimal tool path orientation. The comparative results through FFT analysis in this study provide a guideline for the selection tool path orientation.

  • PDF

Tester Structure Expression Language and Its Application to the Environment for VLSI Tester Program Development

  • Sato, Masayuki;Wakamatsu, Hiroki;Arai, Masayuki;Ichino, Kenichi;Iwasaki, Kazuhiko;Asakawa, Takeshi
    • Journal of Information Processing Systems
    • /
    • v.4 no.4
    • /
    • pp.121-132
    • /
    • 2008
  • VLSI chips have been tested using various automatic test equipment (ATE). Although each ATE has a similar structure, the language for ATE is proprietary and it is not easy to convert a test program for use among different ATE vendors. To address this difficulty we propose a tester structure expression language, a tester language with a novel format. The developed language is called the general tester language (GTL). Developing an interpreter for each tester, the GTL program can be directly applied to the ATE without conversion. It is also possible to select a cost-effective ATE from the test program, because the program expresses the required ATE resources, such as pin counts, measurement accuracy, and memory capacity. We describe the prototype environment for the GTL and the tester selection tool. The software size of the prototype is approximately 27,800 steps and 15 manmonths were required. Using the tester selection tool, the number of man-hours required in order to select an ATE could be reduced to 1/10. A GTL program was successfully executed on actual ATE.

Concurrent Methodology for Part Selection, Loading, and Routing Mix problems in Flexible Manufacturing System (자동생산시스템(FMS)의 통합생산계획에 관한 연구)

  • Ro, In-Kyu;Jung, Dae-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.2
    • /
    • pp.19-30
    • /
    • 1994
  • Generally, a planning problem in a flexible manufacturing system is considered to be a composite of three interdependent tasks : part selection, loading, and routing mix. This research presents a mathematical model which can concurrently solve part selection, loading, and routing mix problems, so the problems that are caused by treating the planning problems independently are solved. The mathematical model is aimed to minimize system unbalance and the number of late parts, including constraints such as machine capacity, tool magazine capacity, and tool inventory. To illustrate the application of the model, an example is included. Solution procedure based on Lagrangian relaxation is also suggested for larger-sized problems.

  • PDF

Optimal Variable Selection in a Thermal Error Model for Real Time Error Compensation (실시간 오차 보정을 위한 열변형 오차 모델의 최적 변수 선택)

  • Hwang, Seok-Hyun;Lee, Jin-Hyeon;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.215-221
    • /
    • 1999
  • The object of the thermal error compensation system in machine tools is improving the accuracy of a machine tool through real time error compensation. The accuracy of the machine tool totally depends on the accuracy of thermal error model. A thermal error model can be obtained by appropriate combination of temperature variables. The proposed method for optimal variable selection in the thermal error model is based on correlation grouping and successive regression analysis. Collinearity matter is improved with the correlation grouping and the judgment function which minimizes residual mean square is used. The linear model is more robust against measurement noises than an engineering judgement model that includes the higher order terms of variables. The proposed method is more effective for the applications in real time error compensation because of the reduction in computational time, sufficient model accuracy, and the robustness.

  • PDF

Automatic Tool Selection and Path Generation for NC Rough Cutting of Sculptured Surface (자유곡면의 NC 황삭가공을 위한 자동 공구 선정과 경로 생성)

  • Hong, Sung Eui;Lee, Kun woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.28-41
    • /
    • 1994
  • An efficient algorithm is proposed to select the proper tools and generate their paths for NC rough cutting of dies and molds with sculptured surfaces. Even though a milling process consists of roughing, semi-finishing, and finishing, most material is removed by a rough cutting process. Therfore it can be said that the rough cutting process occupy an important portion of the NC milling process, and accordingly, an efficient rough cutting method contributes to an efficient milling process. In order work, the following basic assumption is accepted for the efficient machining. That is, to machine a region bounded by a profile, larger tools should be used in the far inside and the region adjacent to relatively simple portion of the boundary while smaller tools are used in the regions adjacent to the relatively complex protion. Thus the tools are selected based on the complexity of the boundary profile adjacent to the region to be machined. An index called cutting path ratio is proposed in this work as a measure of the relative complexity of the profile with respect to a tool diameter. Once the tools are selected, their tool paths are calculated starting from the largest to the smallest tool.

  • PDF