Browse > Article

One-Step Selection of Artificial Transcription Factors Using an In Vivo Screening System  

Bae, Kwang-Hee (ToolGen, Inc.)
Kim, Jin-Soo (Department of Chemistry, Seoul National University)
Abstract
Gene expression is regulated in large part at the level of transcription under the control of sequence-specific transcriptional regulatory proteins. Therefore, the ability to affect gene expression at will using sequencespecific artificial transcription factors would provide researchers with a powerful tool for biotechnology research and drug discovery. Previously, we isolated 56 novel sequence-specific DNA-binding domains from the human genome by in vivo selection. We hypothesized that these domains might be more useful for regulating gene expression in higher eukaryotic cells than those selected in vitro using phage display. However, an unpredictable factor, termed the "context effect", is associated with the construction of novel zinc finger transcription factors--- DNA-binding proteins that bind specifically to 9-base pair target sequences. In this study, we directly selected active artificial zinc finger proteins from a zinc finger protein library. Direct in vivo selection of constituents of a zinc finger protein library may be an efficient method for isolating multi-finger DNA binding proteins while avoiding the context effect.
Keywords
Artificial Transcription Factor; Context Effect; In vivo Selection; Zinc Finger;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Brent, R. and Ptashne, M. A. (1985) Eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43, 729-736   DOI   ScienceOn
2 Choo, Y. and Klug, A. (1994) Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc. Natl. Acad. Sci. USA 91, 11163- 11167   DOI   ScienceOn
3 Isalan, M., Klug, A., and Choo, Y. (2001) A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat. Biotech. 19, 656-660   DOI   ScienceOn
4 Kim, J.-S. and Pabo, C. O. (1997) Transcriptional repression by zinc finger peptides. Exploring the potential for applications in gene therapy. J. Biol. Chem. 272, 29795-29800   DOI   ScienceOn
5 Segal, D. J., Dreier, B., Beerli, R. R., and Barbas, C. F. (1999) Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN- 3′ DNA target sequences. Proc. Natl. Acad. Sci. USA 96, 2758-2763   DOI   ScienceOn
6 Herskowitz, I. and Jensen, R. E. (1991) Putting the HO gene to work: practical uses for mating-type switching. Methods Enzymol. 194, 132-146   DOI
7 Pabo, C. O., Peisach, E., and Grant, R. A. (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70, 313-340   DOI   ScienceOn
8 Park, K. S., Lee, D.-K., Lee, H., Lee, Y., Jang, Y. S., et al. (2003) Phenotype alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat. Biotech. 21, 1208-1214   DOI   ScienceOn
9 Beerli, R. R. and Barbas, C. F. (2002) Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20, 135- 141   DOI   ScienceOn
10 Joung, J. K., Ramm, E. I., and Pabo, C. O. (2000) A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc. Natl. Acad. Sci. USA 97, 7382-7387   DOI   ScienceOn
11 Kim, S.-J., Kang, S.-Y., Shin, H.-H., and Choi, H.-S. (2005) Sulforaphane inhibits osteoclastogenesis by inhibiting nuclear factor-kB. Mol. Cells 20, 364-370
12 Dreier, B., Beerli, R. R., Segal, D. J., Flippin, J. D., and Barbas, C. F. (2001) Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. 276, 29466-29478   DOI   ScienceOn
13 Chevray, P. M. and Nathans, D. (1992) Protein interaction cloning in yeast: identification of mammalian proteins that interact with the leucine zipper of Jun. Proc. Natl. Acad. Sci. USA 89, 5789-5793   DOI   ScienceOn
14 Blancafort, P., Magnenat, L., and Barbas, C. F. (2003) Scanning the human genome with combinatorial transcription factor libraries. Nat. Biotechnol. 21, 269-274   DOI   ScienceOn
15 Cheng, X., Boyer, J. L., and Juliano, R. L. (1997) Selection of peptides that functionally replace a zinc finger in the Sp1 transcription factor by using a yeast combinatorial library. Proc. Natl. Acad. Sci. USA 94, 14120-14125   DOI   ScienceOn
16 Rebar, E. J. and Pabo, C. O. (1994) Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science 263, 671-673   DOI
17 Jamieson, A. C., Miller, J. C., and Pabo, C. O. (2003) Drug discovery with engineered zinc-finger proteins. Nat. Rev. Drug Discov. 2, 361-368   DOI   ScienceOn
18 Jamieson, A. C., Kim, S.-H., and Wells, J. A. (1994) In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry 33, 5689-5695   DOI   ScienceOn
19 Wang, M. M. and Reed, R. R. (1993) Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature 364, 121-126   DOI   ScienceOn
20 Wolfe, S. A., Grant, R. A., Elrod-Erickson, M., and Pabo, C. O. (2001) Beyond the 'recognition code': structures of two Cys2His2 zinc finger/TATA box complexes. Structure 9, 717-723   DOI   ScienceOn
21 Lee, D.-k., Seol, W., and Kim, J. S. (2003) Custom DNAbinding proteins and artificial transcription factors. Curr. Top. Med. Chem. 3, 645-657   DOI   ScienceOn
22 Greisman, H. A. and Pabo, C. O. (1997) A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science 275, 657-661   DOI
23 Paillard, G., Deremble, C., and Lavery, R. (2004) Looking into DNA recognition: zinc finger binding specificity. Nucleic Acids Res. 32, 6673-6682   DOI   ScienceOn
24 Magnenat, L., Blancafort, P., and Barbas, C. F. (2004) In vivo selection of combinatorial libraries and designed affinity maturation of polydactyl zinc finger transcription factors for ICAM-1 provides new insights into gene regulation. J. Mol. Biol. 341, 635-649   DOI   ScienceOn
25 Tan, S., Guschin, D., Davalos, A., Lee, Y. L., Snowden, A. W., et al. (2003) Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity. Proc. Natl. Acad. Sci. USA 100, 11997-12002   DOI   ScienceOn
26 Bae, K.-H., Kwon, Y. D., Shin, H.-C., Hwang, M.-S., Ryu, E.-H., et al. (2003) Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat. Biotech. 21, 275-280   DOI   ScienceOn