• Title/Summary/Keyword: Tomography, X ray computed

Search Result 706, Processing Time 0.023 seconds

The Role of CT as a Preoperative Evaluation of Lateral Cervical Lymph Node Metastasis in Papillary Thyroid Carcinoma (갑상선 유두암의 외측 경부림프절 전이에 대한 수술 전 평가로서 CT의 역할)

  • Seok, Jungirl;Kim, Hyung Gu;Kim, Yoonjoong;Han, Kyu-Hee;Ahn, Soon-Hyun
    • Korean Journal of Head & Neck Oncology
    • /
    • v.29 no.2
    • /
    • pp.37-40
    • /
    • 2013
  • Background and Objectives : To assess the usefulness of computed tomography image before papillary thyroid cancer surgery, focus on confirmation of lateral cervical lymph node metastasis not detected by ultrasonography. Material and Methods : From January 2008 to May 2009, total 150 patients who had undergone thyroid surgery and been confirmed papillary thyroid cancer pathologically were enrolled. They had taken neck computed tomography following the ultrasonography. Results : Computed tomography had found suspicious metastatic lateral neck lesion in 13 patients. After the image study, lateral neck lymph node dissection had been included in their surgical plan. Of these, only 7 cases were confirmed pathologically lateral neck lymph node metastasis(positive predictive value=0.54). Taken as whole 150 patients, additionally 4.7% of patients confirmed lateral neck lymph node metastasis by preoperative computed tomography. Conclusion : If preoperative ultrasonography was performed precisely, additional benefits that could be achieved by computed tomography were not much.

Can ultra-low-dose computed tomography reliably diagnose and classify maxillofacial fractures in the clinical routine?

  • Gerlig Widmann;Marcel Dangl;Elisa Lutz;Bernhard Fleckenstein;Vincent Offermanns;Eva-Maria Gassner;Wolfgang Puelacher;Lukas Salbrechter
    • Imaging Science in Dentistry
    • /
    • v.53 no.1
    • /
    • pp.69-75
    • /
    • 2023
  • Purpose: Maxillofacial trauma predominantly affects young adults between 20 and 40 years of age. Although radioprotection is a legal requirement, the significant potential of dose reduction in computed tomography (CT) is still underused in the clinical routine. The objective of this study was to evaluate whether maxillofacial fractures can be reliably detected and classified using ultra-low-dose CT. Materials and Methods: CT images of 123 clinical cases with maxillofacial fractures were classified by two readers using the AOCOIAC software and compared with the corresponding results from post-treatment images. In group 1, consisting of 97 patients with isolated facial trauma, pre-treatment CT images at different dose levels (volumetric computed tomography dose index: ultra-low dose, 2.6 mGy; low dose, <10 mGy; and regular dose, <20 mGy) were compared with post-treatment cone-beam computed tomography (CBCT). In group 2, consisting of 31 patients with complex midface fractures, pre-treatment shock room CT images were compared with post-treatment CT at different dose levels or CBCT. All images were presented in random order and classified by 2 readers blinded to the clinical results. All cases with an unequal classification were re-evaluated. Results: In both groups, ultra-low-dose CT had no clinically relevant effect on fracture classification. Fourteen cases in group 2 showed minor differences in the classification code, which were no longer obvious after comparing the images directly to each other. Conclusion: Ultra-low-dose CT images allowed the correct diagnosis and classification of maxillofacial fractures. These results might lead to a substantial reconsideration of current reference dose levels.

Wavelet-based Noise reduction filter for 3-dimensional Computed Tomography brian angiography (Wavelet을 이용한 CT 3차원 뇌혈관에서의 노이즈 제거 필터 구현)

  • Seong Yeol-Hun;Bak Hyeon-Jae;Kang Hang-Bong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.859-861
    • /
    • 2005
  • X-ray를 이용한 CT(Computed Tomography : 이하 CT)영상은 사물에 대해 회전하면서 X-ray가 투과하여 감약 정도에 따라서 영상을 획득하지만 검사 목적과는 관계없이 발생되는 통계적인 오차로 인해 정확한 CT영상의 구성을 교란하거나 방해하여 영상의 질을 저하시키고 미세 부분의 관찰 능력을 감소시키는 장해 음영인 아티팩트(artifact)라는 노이즈가 발생한다. 이러한 노이즈를 제거하는 필터를 설계 할 때는 두 가지 고려해야 할 사항이 있는데 첫째는 영상내의 노이즈을 정확히 판단하여 효과적으로 제거해야 하며, 둘째로는 원래의 영상에 가깝도록 경계와 같은 세부 영역을 보존해야 한다는 점이다. 기존에는 mean 필터나 median 필터, 그리고 Gaussian 필터 등을 사용했지만 상세한 부분을 보존하기에는 실패하는 단점이 있다. 따라서 본문에서는 wavelet 변환을 하여 영상의 주파수 대역을 저주파 영역과 고주파 영역으로 분리하여 각각의 영역에서 노이즈를 제거할 수 있도록 적합한 필터를 설계하고 방법을 제안하여 그 필터를 CT 3차원 뇌혈관 영상에 적용하여 많은 노이즈를 제거하였고 낮은 Threshold값에서도 작은 혈관을 관찰 할 수 있었다.

  • PDF

Study on rock fracture behavior under hydromechanical loading by 3-D digital reconstruction

  • Kou, Miaomiao;Liu, Xinrong;Wang, Yunteng
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.283-296
    • /
    • 2020
  • The coupled hydro-mechanical loading conditions commonly occur in the geothermal and petroleum engineering projects, which is significantly important influence on the stability of rock masses. In this article, the influence of flaw inclination angle of fracture behaviors in rock-like materials subjected to both mechanical loads and internal hydraulic pressures is experimentally studied using the 3-D X-ray computed tomography combined with 3-D reconstruction techniques. Triaxial compression experiments under confining pressure of 8.0 MPa are first conducted for intact rock-like specimens using a rock mechanics testing system. Four pre-flawed rock-like specimens containing a single open flaw with different inclination angle under the coupled hydro-mechanical loading conditions are carried out. Then, the broken pre-flawed rock-like specimens are analyzed using a 3-D X-ray computed tomography (CT) scanning system. Subsequently, the internal damage behaviors of failed pre-flawed rock-like specimens are evaluated by the 3-D reconstruction techniques, according to the horizontal and vertical cross-sectional CT images. The present experimental does not only focus on the mechanical responses, but also pays attentions to the internal fracture characteristics of rock-like materials under the coupled hydro-mechanical loading conditions. The conclusion remarks are significant for predicting the rock instability in geothermal and unconventional petroleum engineering.

Assessment of DVC measurement uncertainty on GFRPs with various fiber architectures

  • Bartulovic, Ante;Tomicevic, Zvonimir;Bubalo, Ante;Hild, Francois
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.15-32
    • /
    • 2022
  • The comprehensive understanding of the fiber reinforced polymer behavior requires the use of advanced non-destructive testing methods due to its heterogeneous microstructure and anisotropic mechanical proprieties. In addition, the material response under load is strongly associated with manufacturing defects (e.g., voids, inclusions, fiber misalignment, debonds, improper cure and delamination). Such imperfections and microstructures induce various damage mechanisms arising at different scales before macrocracks are formed. The origin of damage phenomena can only be fully understood with the access to underlying microstructural features. This makes X-ray Computed Tomography an appropriate imaging tool to capture changes in the bulk of fibrous materials. Moreover, Digital Volume Correlation (DVC) can be used to measure kinematic fields induced by various loading histories. The correlation technique relies on image contrast induced by microstructures. Fibrous composites can be reinforced by different fiber architectures that may lead to poor natural contrast. Hence, a priori analyses need to be performed to assess the corresponding DVC measurement uncertainties. This study aimed to evaluate measurement resolutions of global and regularized DVC for glass fiber reinforced polymers with different fiber architectures. The measurement uncertainties were evaluated with respect to element size and regularization lengths. Even though FE-based DVC could not reach the recommended displacement uncertainty with low spatial resolution, regularized DVC enabled for the use of fine meshes when applying appropriate regularization.

개인용 컴퓨터를 이용한 뇌 합성영상에 대한 재구성

  • Min, Hyeong-Gi;Nam, Sang-Hui
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.3 no.1
    • /
    • pp.110-118
    • /
    • 1997
  • Recently, to make a diagnosis of the patient different X-Ray examinations are used. To name a few, Computed Tomography(CT). Magnetic Resonance Image(MRI) Single Photon Emission Computed Tomography(SPET) and Positron Emission Tomography(PET). But diagnosticians face difficulties sometimes when they make a diagnosis with images from those examinations. One of the problem is whether the Lesions of the patient is captured in the image correctly. Another one is whether the images are taken with same angle. in this paper, a study 9 on the method to obtain the hybrid image from the different images to different examinations. The procedure done in this paper is described as future study. Although small errors in position between images would occurred, this method more useful as it does not make patients in convenient. To reconstruct a image, some images are scanned by scanner and stored to personal computer for further image processing with Aldus photostyler program. The method to generate a sharpened image are also described.

  • PDF

Diagnostic Usefulness of Computed Tomography Compared to Conventional Chest X-Ray for Chest Trauma Patients (흉부 외상 환자에서 일반흉부촬영과 비교한 흉부단층촬영의 진단적 유용성)

  • Choi, Kyu Ill;Seo, Kang Suk;Ryoo, Hyun Wook;Park, Jung Bae;Chung, Jae Myung;Ahn, Jae Yoon;Kang, Seong Won;Yi, Jae Hyuck
    • Journal of Trauma and Injury
    • /
    • v.22 no.2
    • /
    • pp.142-147
    • /
    • 2009
  • Purpose: Early diagnosis and management of therapeutic interventions are very important in chest trauma. Conventional chest X-rays (CXR) and computed tomography (CT) are the diagnostic tools that can be quickly implemented for chest trauma patients in the emergency department. In this study, the usefulness of the CT as a diagnostic measurement was examined by analyzing the ability to detect thoracic injuries in trauma patients who had visited the emergency department and undergone CXR and CT. Methods: This study involved 84 patients who had visited the emergency department due to chest trauma and who had undergone both CXR and CT during their diagnostic process. The patients' characteristics and early vital signs were examined through a retrospective analysis of their medical records, and the CXR and the CT saved in the Picture Archiving Communication System (PACS) were examined by a radiologist and an emergency physician to verify whether or not a lesion was present. Results: Pneumothoraxes, hemothoraxes, pneumomediastina, pulmonary lacerations, rib fractures, vertebral fractures, chest wall contusions, and subcutaneous emphysema were prevalently found in a statistically meaningful way (p<0.05) on the CT. Even though their statistical significance couldn' be verified, other disorders, including aortic injury, were more prevalently found by CT than by CXR. Conclusion: CT implemented for chest trauma patients visiting the emergency department allowed disorders that couldn' be found on CXR to be verified, which helped us to could accurately evaluate patients.

Analysis of Failure Mechanisms during Powder Compaction

  • Wu, Chuan-Yu;Bentham, A.C.;Mills, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.26-27
    • /
    • 2006
  • Capping mechanisms during the compaction of pharmaceutical powders were explored. Both experimental and numerical investigations were performed. For the experimental study, an X-ray Computed Microtomography system has also used to examine the internal failure patterns of the tablets produced using a compaction simulator. Finite element (FE) methods have also been used to analyse the powder compaction. The experimental and numerical studies have shown that the shear bands developed at the early stage of unloading appear to be responsible for the occurrence of capping. It has also been found that the capping patterns depend on the compact shape.

  • PDF

Saturated Hydraulic Conductivity of Surface Seals Estimated from Computed Tomography-Measured Porosity (고해상도 X-ray CT 를 이용한 토양표면 피막의 공극율 및 포화수리전도도 측정)

  • Lee, Sang-Soo;Gantzer, C.J.;Thompson, A.L.;Anderson, S.H.;Ketchum, R.A.;Ok, Yong-Sik
    • 한국환경농학회:학술대회논문집
    • /
    • 2011.07a
    • /
    • pp.207-222
    • /
    • 2011
  • Relationships between soil saturated hydraulic conductivity ($K_s$) and porosity (${\phi}$) have been developed over many years; however, use of these relationships for evaluating rain-induced seals is limited mainly because of difficulties in estimating seal pore-size characteristics. The objectives of this study were to evaluate the $K_s$ of soil surface seals over a range of thicknesses, where seal thickness was determined using a High-Resolution-Computed-Tomography (HRCT) scanner, and to investigate relationships between $K_s$ and ${\phi}$ of developing seals in samples with equivalent diameters (e.d.) ${\geq}15\;{\mu}m$. A Mexico silt loam soil was packed to a bulk density (${\rho}_b$) of $1.1\;Mg\;m^{-3}$ in cylinders 160-mm i.d. by 160-mm long and subjected to $61-mm\;h^{-1}$ simulated rainfall having a kinetic energy (KE) of $25\;J\;m^{-2}\;min^{-1}$ for 7.5, 15, 30, and 60 min to create a range in seal development. Thicknesses of the seal layers were determined by analysis of HRCT images of seals. The $K_s$ values of the seals were estimated using an effective $K_s$ value ($K_{s-eff}$). The $K_s-{\phi}$ relationship was described by a Kozeny and Carmen equation, $K_s=B{\phi}^n$; where B and n are empirical constants and n = 31. This approach explained 86% of the variation between $K_s$ and ${\phi}$ within the soil seals. Knowledge of surface seal information and hydraulic conductivity can provide useful information to use in management of sites prone to sealing formation.

  • PDF

Photon-Counting Detector CT: Key Points Radiologists Should Know

  • Andrea Esquivel;Andrea Ferrero;Achille Mileto;Francis Baffour;Kelly Horst;Prabhakar Shantha Rajiah;Akitoshi Inoue;Shuai Leng;Cynthia McCollough;Joel G. Fletcher
    • Korean Journal of Radiology
    • /
    • v.23 no.9
    • /
    • pp.854-865
    • /
    • 2022
  • Photon-counting detector (PCD) CT is a new CT technology utilizing a direct conversion X-ray detector, where incident X-ray photon energies are directly recorded as electronical signals. The design of the photon-counting detector itself facilitates improvements in spatial resolution (via smaller detector pixel design) and iodine signal (via count weighting) while still permitting multi-energy imaging. PCD-CT can eliminate electronic noise and reduce artifacts due to the use of energy thresholds. Improved dose efficiency is important for low dose CT and pediatric imaging. The ultra-high spatial resolution of PCD-CT design permits lower dose scanning for all body regions and is particularly helpful in identifying important imaging findings in thoracic and musculoskeletal CT. Improved iodine signal may be helpful for low contrast tasks in abdominal imaging. Virtual monoenergetic images and material classification will assist with numerous diagnostic tasks in abdominal, musculoskeletal, and cardiovascular imaging. Dual-source PCD-CT permits multi-energy CT images of the heart and coronary arteries at high temporal resolution. In this special review article, we review the clinical benefits of this technology across a wide variety of radiological subspecialties.