Browse > Article
http://dx.doi.org/10.12989/sem.2020.74.2.283

Study on rock fracture behavior under hydromechanical loading by 3-D digital reconstruction  

Kou, Miaomiao (School of Civil Engineering, Chongqing University)
Liu, Xinrong (School of Civil Engineering, Chongqing University)
Wang, Yunteng (School of Civil Engineering, Chongqing University)
Publication Information
Structural Engineering and Mechanics / v.74, no.2, 2020 , pp. 283-296 More about this Journal
Abstract
The coupled hydro-mechanical loading conditions commonly occur in the geothermal and petroleum engineering projects, which is significantly important influence on the stability of rock masses. In this article, the influence of flaw inclination angle of fracture behaviors in rock-like materials subjected to both mechanical loads and internal hydraulic pressures is experimentally studied using the 3-D X-ray computed tomography combined with 3-D reconstruction techniques. Triaxial compression experiments under confining pressure of 8.0 MPa are first conducted for intact rock-like specimens using a rock mechanics testing system. Four pre-flawed rock-like specimens containing a single open flaw with different inclination angle under the coupled hydro-mechanical loading conditions are carried out. Then, the broken pre-flawed rock-like specimens are analyzed using a 3-D X-ray computed tomography (CT) scanning system. Subsequently, the internal damage behaviors of failed pre-flawed rock-like specimens are evaluated by the 3-D reconstruction techniques, according to the horizontal and vertical cross-sectional CT images. The present experimental does not only focus on the mechanical responses, but also pays attentions to the internal fracture characteristics of rock-like materials under the coupled hydro-mechanical loading conditions. The conclusion remarks are significant for predicting the rock instability in geothermal and unconventional petroleum engineering.
Keywords
hydro-mechanical loading; flaw inclination angle; internal fracture behaviors; rock-like materials; 3-D reconstruction;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Cala, M., Cyran, K., Stopkowicz, A., Kolano, M. and Szczygielski, M. (2016), "Preliminary Application of X-ray Computed Tomograph on Characterisation of Polish Gas Shale Mechanical Properties", Rock Mech. Rock Eng., 49(12), 4935-4943. https://doi.org/10.1007/s00603-016-1045-6.   DOI
2 Diaz, M., Kim, K.Y., Yeom, S., Zhuang, L., Park, S. and Min, K.B. (2017), "Surface roughness characterization of open and closed rock joints in deep cores using X-ray computed tomography", Int. J. Rock Mech. Min. Sci., 98, 10-19. https://doi.org/10.1016/j.ijrmms.2017.07.001.   DOI
3 Einstein, H.H. and Hirschfeld, R.C. (1973), "Model studies on mechanics of jointed rock", J. Soil Mech. Found. Div. ASCE, 99, 229-248.   DOI
4 Feng, X.T., Chen, S.L. and Zhou H. (2004), "Real-time computerized tomography (CT) experiments on sandstone damage evolution during triaxial compression with chemical corrosion", Int. J. Rock Mech. Min. Sci., 41(2), 181-192. https://doi.org/10.1016/S1365-1609(03)00059-5.   DOI
5 Ge, X.R., Ren, J.X., Pu, Y.B., Ma, G.W. and Zhu, Y.L. (2001), "Real-in time CT test of the rock meso-damage propagation law", Sci. China (Ser. E), 44(3), 328-336. https://doi.org/10.1007/BF02916710.
6 Haeri, H., Sarfarazi, V. and Zhu, Z. (2018), "Numerical simulation of the effect of bedding layer geometrical properties on the punch shear test using PFC3D", Struct. Eng. Mech., 68(4), 507-517. https://doi.org/10.12989/sem.2018.68.4.507.   DOI
7 Wang, L. and Abeyaratne, R. (2018c), "A one-dimensional peridynamic model of defect propagation and its relation to certain other continuum models", J. Mech. Phys. Solids, 116, 334-349. https://doi.org/10.1016/j.jmps.2018.03.028.   DOI
8 Wang, Y., Liu, B. and Qi, Y. (2018), "A Risk Evaluation Method with an Improved Scale for Tunnel Engineering", Abab. J. Sci. Eng., 43, 2053-2067. https://doi.org/10.1007/s13369-017-2974-4.
9 Wang, Y., Li, C.H. and Hu, Y.Z. (2019a), "3D image visualization of meso-structural changes in a bimsoil under uniaxial compression using X-ray computed tomography (CT)", Eng. Geol., 248, 61-69. https://doi.org/10.1016/j.enggeo.2018.11.004.   DOI
10 Wang, Y., Zhou, X. and Kou, M. (2019b), "An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks", Eur. J. Mech. A-Solid, 73, 282-305. https://doi.org/10.1016/j.euromechsol.2018.09.007.   DOI
11 Wong, L.N.Y. and Einstein, H.H. (2009), "Crack coalescence in molded gypsum and Carrara marble: part I. Macroscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 475-511. https://doi.org/10.1007/s00603-008-0002-4.   DOI
12 Wang, Y.T., Zhou, X.P. and Kou, M.M. (2019c), "Three-dimensional numerical study on the failure characteristics of intermittent fissures under compressive-shear loads", Acta Geotech., 14(4), 1161-1193. https://doi.org/10.1007/s11440-018-0709-7.   DOI
13 Wang, L., Xu, J., Wang, J. and Karihaloo, B.L. (2019d), "A mechanism-based spatiotemporal non-local constitutive formulation for elastodynamics of composites", Mech. Mater., 128, 105-116. https://doi.org/10.1016/j.mechmat.2018.07.013.   DOI
14 Wang, S., Li, X., Yao, J., Gong, F., Li, X., Du, K., Tao, M., Huang, L. and Du, S. (2019e), "Experimental investigation of rock breakage by a conical pick and its application to non-explosive mechanized mining in deep hard rock", Int. J. Rock Mech. Min. Sci., 122, 104063. https://doi.org/10.1016/j.ijrmms.2019.104063.   DOI
15 Haeri, H., Sarfarazi, V., Zhu, Z. and Marji, MF. (2019b), "Experimental and numerical studies of the pre-existing cracks and pores interaction in concrete specimens under compression", Smart Struct. Syst., 23(5), 479-493. https://doi.org/10.12989/sss.2019.23.5.479.   DOI
16 Wang, L. and Wang, J. (2019f), "On the Invariance of Governing Equations of Current Nonlocal Theories of Elasticity Under Coordinate Transformation and Displacement Gauge Change", J. Elast., 137, 237-246. https://doi.org/10.1007/s10659-018-09715-7.   DOI
17 Wang, S., Huang, L. and Li, X. (2020), "Analysis of rockburst triggered by hard rock fragmentation using a conical pick under high uniaxial stress", Tunnel. Undergr. Sp. Tech., 96, 103195. https://doi.org/10.1016/j.tust.2019.103195.   DOI
18 Wong, R.H.C. and Chau, K.T. (1998), "Crack coalescence in a rock-like material containing two cracks", Int. J. Rock Mech. Min. Sci., 35(2), 147-164. https://doi.org/10.1016/S0148-9062(97)00303-3.   DOI
19 Yang, S.Q., Ju, Y., Gao, F. and Gui, Y.L. (2016), "Strength, deformability and X-ray micro-CT observations of deeply buried marble under different confining pressures", Rock Mech. Rock Eng., 49(11), 4227-4244. https://doi.org/10.1007/s00603-016-1040-y.   DOI
20 Hirono, T., Takahashi, M. and Nakashima, S. (2003), "In situ visualization of fluid flow image within deformed rock by X-ray CT", Eng. Geol., 70, 37-46. https://doi.org/10.1016/S0013-7952(03)00074-7.   DOI
21 Huang, Y.H., Yang, S.Q., Tian, W.L., Zhao, J., Ma, D. and Zhang, C.S. (2017a), "Physical and mechanical behavior of granite containing pre-existing holes after high temperature treatment", Arch. Civ. Mech. Eng., 17(4), 912-925. https://doi.org/10.1016/j.acme.2017.03.007.   DOI
22 Huang, S., Liu, D., Yao, Y., Gan, Q., Cai, Y. and Xu, L.(2017b), "Natural fractures initiation and fracture type prediction in coal reservoir under different in-situ stresses during hydraulic fracturing", J. Nat. Gas. Sci. Eng., 43, 69-80. https://doi.org/10.1016/j.jngse.2017.03.022.   DOI
23 Huang, Y.H. and Yang, S.Q. (2018a), "Mechanical and cracking behavior of granite containing two coplanar flaws under conventional triaxial compression", Int. J. Damage Mech., 28(4), 590-610. https://doi.org/10.1177/1056789518780214.   DOI
24 Huang, Y.H., Yang, S.Q., Hall, M.R., Tian, W.L. and Yin, P.F. (2018b), "Experimental study on uniaxial mechanical properties and crack propagation in sandstone containing a single oval cavity", Arch. Civ. Mech. Eng., 18(4), 1359-1373. https://doi.org/10.1016/j.acme.2018.04.005.   DOI
25 Haeri, H., Sarfarazi, V., Zhu, Z. and Moosavi, E. (2019a), "Effect of transversely bedding layer on the biaxial failure mechanism of brittle materials", Struct. Eng. Mech., 69(1), 11-20. https://doi.org/10.12989/sem.2019.69.1.011.   DOI
26 Yun, T.S., Jeong, Y.J., Kim, K.Y. and Min, K.B. (2013), "Evaluation of rock anisotropy using 3D X-ray computed tomography", Eng. Geol., 163, 11-19. https://doi.org/10.1016/j.enggeo.2013.05.017.   DOI
27 Yang, S.Q. and Huang, Y.H. (2017), "An experimental study on deformation and failure mechanical behavior of granite containing a single fissure under different confining pressures", Environ. Earth Sci., 76(10), 364. https://doi.org/10.1007/s12665-017-6696-4.   DOI
28 Yang, S.Q. (2018), "Fracturing mechanism of compressed hollow-cylinder sandstone evaluated by X-ray micro-CT scanning", Rock Mech. Rock Eng., 51(7), 2033-2053. https://doi.org/10.1007/s00603-018-1466-5.   DOI
29 Yu, L. and Pan, B. (2017), "Color stereo-digital image correlation method using a single 3CCD color camera", Exp. Mech., 57(4), 649-657. https://doi.org/10.1007/s11340-017-0253-7.   DOI
30 Yu, L., Tao, R. and Lubineau, G. (2019), "Accurate 3D shape, displacement and deformation measurement using a smartphone", Sensors, 19(3), 719. https://doi.org/10.3390/s19030719.   DOI
31 Zhao, G.F., Russell, A.R., Zhao, X. and Khalili, N. (2014), "Strain rate dependency of uniaxial tensile strength in Gosford sandstone by the Distinct Lattice Spring Model with X-ray micro CT", Int. J. Solids Struct., 51, 1587-1600. https://doi.org/10.1016/j.ijsolstr.2014.01.012.   DOI
32 Zhang, R., Ai, T., Ren, L. and Li, G. (2019), "Failure characterization of three typical coal-bearing formation rocks using acoustic emission monitoring and X-ray computed tomography techniques", Rock Mech. Rock Eng., 52(6), 1945-1958. https://doi.org/10.1007/s00603-018-1677-9.   DOI
33 Zhou, X.P., Zhang, Y.X. and Ha, Q.L. (2008), "Real-time computerized tomography (CT) experiments on limestone damage evolution during unloading", Theor. Appl. Fract. Mech., 50(1), 49-56. https://doi.org/10.1016/j.tafmec.2008.04.005.   DOI
34 Kou, M., Lian, Y.J. and Wang, Y.T. (2019c), "Numerical investigations on crack propagation and crack branching in brittle solids under dynamic loading using bond-particle model", Eng. Fract. Mech., 212, 41-56.   DOI
35 Kawakata, H., Cho, A., Kiyama, T., T. Yanagidani, K. Kusunose, M. Shimada(1999), "Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan", Tectonophysics, 313(3), 293-305. https://doi.org/10.1016/S0040-1951(99)00205-X.   DOI
36 Kou, M.M., Liu, X.R., Tang, S.D. and Wang, Y. (2019a), "3-D X-ray Computed Tomography on Failure Characteristics of Rock-like Materials under Coupled Hydro-Mechanical Loading", Theor. Appl. Fract. Mech., 104, 102396. https://doi.org/10.1016/j.tafmec.2019.102396.   DOI
37 Kou, M., Han, D., Xiao, C. and Wang, Y. (2019b), "Dynamic fracture instability in brittle materials: Insights from DEM simulations", Struct. Eng. Mech., 71(1), 65-75. https://doi.org/10.12989/sem.2019.71.1.065.   DOI
38 Li, X. and Chen, J. (2016), "An extended cohesive damage model for simulating multicrack propagation in fibre composites", Compos. Struct., 143, 1-8. https://doi.org/10.1016/j.compstruct.2016.02.026.   DOI
39 Li, X. and Chen, J. (2017a), "An extended cohesive damage model for simulating arbitrary damage propagation in engineering materials", Comput. Methods Appl. Mech. Engrg., 315, 744-759. https://doi.org/10.1016/j.cma.2016.11.029.   DOI
40 Li, X., and Chen, J. (2017b), "A highly efficient prediction of delamination migration in laminated composites using the extended cohesive damage model", Compos. Struct., 160, 712-721. https://doi.org/10.1016/j.compstruct.2016.10.098.   DOI
41 Sarfarazi, V. and Haeri, H. (2018), "Three-dimensional numerical modeling of effect of bedding layer on the tensile failure behavior in hollow disc models using Particle Flow Code (PFC3D)", Struct. Eng. Mech., 68(5), 537-547. https://doi.org/10.12989/sem.2018.68.5.537.   DOI
42 Zhou, X.P., Cheng, H. and Feng, Y.F. (2014), "An Experimental Study of Crack Coalescence Behaviour in Rock-like Materials Containing Multiple Flaws Under Uniaxial Compression", Rock Mech. Rock Eng., 47(6), 1961-1986. https://doi.org/10.1007/s00603-013-0511-7.   DOI
43 Liu, Y., Dai, F., Dong, L., Xu, N. and Feng, P. (2018), "Experimental investigation on the fatigue mechanical properties of intermittently jointed rock models under cyclic uniaxial compression with different loading parameters", Rock Mech. Rock Eng., 51(1), 47-68. https://doi.org/10.1007/s00603-017-1327-7.   DOI
44 Zhuang, X., Chun, J. and Zhu, H. (2014), "A comparative study on unfilled and filled crack propagation for rock-like brittle material", Theor. Appl. Fract. Mech., 72, 110-120. https://doi.org/10.1016/j.tafmec.2014.04.004.   DOI
45 Zhou, X.P., Wang, Y.T., Zhang, J.Z. and Liu, F.N. (2019), "Fracturing behavior study of three-flawed specimens by uniaxial compression and 3D digital image correlation: sensitivity to brittleness", Rock Mech. Rock Eng., 52(3), 691-718. https://doi.org/10.1007/s00603-018-1600-4.   DOI
46 Zhou, Z., Cai, X., Ma, D., Chen, L., Wang, S. and Tan L. (2018), "Dynamic tensile properties of sandstone subjected to wetting and drying cycles", Constr. Build Mater., 182: 215-232. https://doi.org/10.1016/j.conbuildmat.2018.06.056.   DOI
47 Zhou, Z., Cai, X., Li, X., Cao, W. and Du, X. (2019), "Dynamic Response and Energy Evolution of Sandstone Under Coupled Static-Dynamic Compression: Insights from Experimental Study into Deep Rock Engineering Applications", Rock Mech. Rock Eng., 1-27. https://doi.org/10.1007/s00603-019-01980-9.
48 Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type material under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9.   DOI
49 Christe, P., Turberg, P., Labious, V., Meuli, R. and Parriaux, A. (2011), "An X-ray computed tomography-based index to characterize the quality of cataclastic carbonate rock samples", Eng. Geol., 117, 180-188. https://doi.org/10.1016/j.enggeo.2010.10.016.   DOI
50 Meier, T., Rybacki, E., Backers, T. and Dresen, G. (2015), "Influence of bedding angle on borehole stability: a laboratory investigation of transverse isotropic oil shale", Rock Mech. Rock Eng., 48(4), 1535-1546. https://doi.org/10.1007/s00603-014-0654-1.   DOI
51 Song, Z., Konietzky, H. and Fruhwirt, T. (2018), "Hysteresis energy-based failure indicators for concrete and brittle rocks under the condition of fatigue loading", Int J Fatigue, 114, 298-310. https://doi.org/10.1016/j.ijfatigue.2018.06.001.   DOI
52 Song, Z., Konietzky, H. and Herbst, M. (2019a), "Bonded-particle model-based simulation of artificial rock subjected to cyclic loading", Acta Geotech., 14, 955-971. https://doi.org/10.1007/s11440-018-0723-9.   DOI
53 Song, Z., Fruhwirt, T. and Konietzky, H. (2019b), "Inhomogeneous mechanical behaviour of concrete subjected to monotonic and cyclic loading", Int J Fatigue, 105383. https://doi.org/10.1016/j.ijfatigue.2019.105383.
54 Wang, Y., Zhou, X., Shou, Y. (2017b), "The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics", Int. J. Mech. Sci., 128, 614-643. https://doi.org/10.1016/j.ijmecsci.2017.05.019.   DOI
55 Silva, B.G.D. and Einstein, H.H. (2014), "Finite element study of fracture initiation in flaws subject to internal fluid pressure and vertical stress". Int. J. Solids Struct., 51(23-24), 4122-4136. https://doi.org/10.1016/j.ijsolstr.2014.08.006.   DOI
56 Sufian, A., Russell, A.R. (2013), "Microstructural pore changes and energy dissipation in Gosford sandstone during pre-failure loading using X-ray CT", Int. J. Rock Mech. Min. Sci., 57, 119-131. https://doi.org/10.1016/j.ijrmms.2012.07.021.   DOI
57 Wang, Y., Zhou, X. and Xu, X. (2016), "Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads", Eng. Fract. Mech., 163, 248-273. https://doi.org/10.1016/j.engfracmech.2016.06.013.   DOI
58 Cai, X., Zhou, Z., Liu, K., Du, X. and Zhang, H. (2019), "Water-Weakening Effects on the Mechanical Behavior of Different Rock Types: Phenomena and Mechanisms", Appl. Sci., 9(20), 4450. https://doi.org/10.3390/app9204450.   DOI
59 Cao, R. H., Cao, P., Lin, H., Ma, G.W., X., Fan and Xiong, X.G. (2018), "Mechanical behavior of an opening in a jointed rock-like specimen under uniaxial loading: Experimental studies and particle mechanics approach", Arch. Civ. Mech. Eng., 18(1), 198-214. https://doi.org/10.1016/j.acme.2017.06.010.   DOI
60 Wang, L., Xu, J. and Wang, J. (2017a), "Static and dynamic Green's functions in peridynamics", J. Elast., 126, 95-125. https://doi.org/10.1007/s10659-016-9583-4.   DOI
61 Wang, Y., Li, C.H., Hao, J. and Zhou, R.Q. (2018a), "X-ray micro-tomography for investigation of meso-structural changes and crack evolution in Longmaxi formation shale during compressive deformation", J. Petrol. Sci. Eng, 164, 278-288. https://doi.org/10.1016/j.petrol.2018.01.079.   DOI
62 Wang, Y., Zhou, X., Wang, Y. and Shou, Y. (2018b), "A 3D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids", Int. J. Solids Struct., 134, 89-115. https://doi.org/10.1016/j.ijsolstr.2017.10.022.   DOI