• Title/Summary/Keyword: Tomato greenhouse

Search Result 271, Processing Time 0.03 seconds

Residual Characteristics of Fluquinconazole and Flusilazole in Tomatoes during Greenhouse Cultivation and Processing (토마토 중 fluquinconazole과 flusilazole의 포장 및 가공에 따른 잔류특성)

  • Noh, Hyun Ho;Lee, Jae Yun;Park, Hyo Kyoung;Jeong, Hye Rim;Jin, Me Jee;Lee, Jung Woo;Jeong, Heon Sang;Lee, Sang Hoon;Kyung, Kee Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.21 no.1
    • /
    • pp.84-89
    • /
    • 2017
  • This study was carried out to investigate residue dissipation of fluquinconazole and flusilazole in field-sprayed tomatoes during greenhouse cultivation and processing. The test pesticide, fluquinconazole+flusilazole 8.5 (7+1.5)% SC, was sprayed onto the tomatoes growing in a greenhouse according to Korea preharvest intervals and then samples were collected on 0 (3 hours after spraying), 1, 3, 5 and 7 days after last application for decline test. For processing test, tomatoes collected at harvest on 5 day after last application were processed to puree and juice. Limits of quantitation of fluquinconazole and flusilazole were 0.005 mg/kg in both tomatoes and their processed products. Recoveries for validation of the analytical methods for fluquinconazole and flusilazole in tomatoes and their processed products ranged from 74.8 to 97.5%. Biological half-lives of fluquinconazole and flusilazole in tomatoes under greenhouse conditions found to be 5.2 and 6.4 days, respectively. Average persistent residue levels of fluquinconazole and flusilazole were 37.34 and 79.53% after washing, 8.95 and 28.75% in filtrates after boiling, 3.58 and 14.66% in puree, and 3.34 and 13.52% in juice, respectively. These results indicated that the test pesticide residues on tomatoes could be largely removed through washing and boiling.

Physical Properties of Organic Vegetable Cultivation Soils under Plastic Greenhouse (유기농 시설채소 재배지 토양의 물리적 특성변화)

  • Lee, Sang-Beom;Choi, Won-A;Hong, Seung-Gil;Park, Kwang-Lai;Lee, Cho-Rong;Kim, Seok-Cheol;An, Min-Sil
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.963-974
    • /
    • 2015
  • This study was conducted to determine the effects of organic vegetable cultivation on the soil physical properties in 33 farmlands under plastic greenhouse in Korea. We were investigated 5~8 farms per organic vegetable crops during the period from August to November 2014. The main cultivated vegetables were leafy lettuce (Lactuca sativa L.), Perilla leaves (Perilla frutescens var. Japonica Hara), cucumber (Cucumis sativus L.), strawberry (Fragaria ananassa L.) and tomato (Lycopersicon spp.). We have analyzed soil physical properties. The measured soil physical parameters were soil plough layer, soil hardness, penetration resistance, three soil phase, bulk density and Porosity. The measurement of the soil plough layer, soil hardness and penetration resistance were carried out direct in the fields, and the samples for other parameters were taken using the soil core method with approximately 20 mm diameter core collected from each organic vegetable field. Soil plough layer was average 36 cm and ranged between 30 and 50 cm, and slightly different depending on the sorts of vegetable cultivation. The soil hardness was $0.17{\pm}0.15{\sim}1.34{\pm}1.02$ in the topsoil, $0.55{\pm}0.34{\sim}1.15{\pm}0.62$ in the subsoil. It was not different between topsoil and subsoil, but showed a statistically significant difference between the leafy and fruit vegetables. Penetrometer resistance is one of the important soil physical properties that can determine both root elongation and yield. The increase in density under leafy vegetables resulted in a higher soil penetrometer resistance. Soil is a three-component system comprised of solid, liquid, and gas phases distributed in a complex geometry that creates large solidliquid, liquid-gas, and gas-solid interfacial areas. The three soil phases were dynamic and typically changed in organic vegetable soils under greenhouse. Porosity was characterized as range of $54.2{\pm}2.2{\sim}60.3{\pm}2.4%$. Most measured soils have bulk densities between 1.0 and $1.6gcm^{-3}$. To summarize the above results, Soil plough layer has been deepened in organic vegetable cultivation soils. Solid hardness (the hardness of the soil) and bulk density (suitable for the soil unit mass) have been lowered. Porosity (soil spatial content) was high such as a well known in organic farmlands. Important changes were observed in the physical properties according to the different vegetable cultivation. We have demonstrated that the physical properties of organic cultivated soils under plastic greenhouse were improved in the results of this study.

Feasibility Test on Automatic Control of Soil Water Potential Using a Portable Irrigation Controller with an Electrical Resistance-based Watermark Sensor (전기저항식 워터마크센서기반 소형 관수장치의 토양 수분퍼텐셜 자동제어 효용성 평가)

  • Kim, Hak-Jin;Roh, Mi-Young;Lee, Dong-Hoon;Jeon, Sang-Ho;Hur, Seung-Oh;Choi, Jin-Yong;Chung, Sun-Ok;Rhee, Joong-Yong
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2011
  • Maintenance of adequate soil water potential during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil water movement within and below the rooting zone can facilitate optimal irrigation scheduling aimed at minimizing the adverse effects of water stress on crop growth and development and the leaching of water below the root zone which can have adverse environmental effects. The objective of this study was to evaluate the feasibility of using a portable irrigation controller with an Watermark sensor for the cultivation of drip-irrigated vegetable crops in a greenhouse. The control capability of the irrigation controller for a soil water potential of -20 kPa was evaluated under summer conditions by cultivating 45-day-old tomato plants grown in three differently textured soils (sandy loam, loam, and loamy sands). Water contents through each soil profile were continuously monitored using three Sentek probes, each consisting of three capacitance sensors at 10, 20, and 30 cm depths. Even though a repeatable cycling of soil water potential occurred for the potential treatment, the lower limit of the Watermark (about 0 kPa) obtained in this study presented a limitation of using the Watermark sensor for optimal irrigation of tomato plants where -20 kPa was used as a point for triggering irrigations. This problem might be related to the slow response time and inadequate soil-sensor interface of the Watermark sensor as compared to a porous and ceramic cup-based tensiometer with a sensitive pressure transducer. In addition, the irrigation time of 50 to 60 min at each of the irrigation operation gave a rapid drop of the potential to zero, resulting in over irrigation of tomatoes. There were differences in water content among the three different soil types under the variable rate irrigation, showing a range of water contents of 16 to 24%, 17 to 28%, and 24 to 32% for loamy sand, sandy loam, and loam soils, respectively. The greatest rate increase in water content was observed in the top of 10 cm depth of sandy loam soil within almost 60 min from the start of irrigation.

Effect of Growing Part Following Local Heating for Cherry Tomato on Temperature Distribution of Crop and Fuel Consumption (방울토마토 생장부 추종 국소난방이 군락 온도분포 및 연료소비에 미치는 영향)

  • Kwon, Jin Kyung;Kang, Geum Chun;Moon, Jong Pil;Lee, Tae Seok;Lee, Su Jang
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.217-225
    • /
    • 2015
  • Local heating system providing hot air locally to growing parts including shoot apex and flower cluster which were temperature-sensitive organs of cherry tomato was developed to reduce energy consumption for greenhouse heating without decline of crop growth. Growing part following local heating system was composed of double duct distributer which connected inner and outer ducts with hot air heater and winder which moved ducts up and down following growing parts with plant growth. Growing part local heating system was compared with conventional bottom duct heating system with respect to distributions of air and leaf surface temperatures according to height, growth characteristics and energy consumption. By growing part local heating, air temperature around growing part was maintained $0.9{\sim}2.0^{\circ}C$ higher than that of lower part of crop and leaf surface temperature was also stratified according to height. Investigations on crop growth characteristics and crop yield showed no statistically significant difference except for plant height between bottom duct heating and growing part local heating. As a result, the growing part local heating system consumed 23.7% less heating energy than the bottom duct heating system without decrease of crop yield.

Effects of a Soil-Born Paenibacillus spp. Strain KPB3 on Suppression of Bacterial Wilt Disease Caused by Ralstonia solanacearum (토양에서 분리한 Paenibacillus spp. KPB3의 Ralstonia solanacearum에 의한 세균성 풋마름병 억제 효과)

  • Suk, Jung-Ki;Ipper, Nagesh S.;Lee, Seon-Hwa;Shrestha, Anupama;Park, Duck-Hwan;Cho, Jun-Mo;Hur, Jang-Hyun;Kim, Byung-Sup;Lim, Chun-Keun
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.4
    • /
    • pp.313-319
    • /
    • 2006
  • Two hundred bacterial strains were isolated from the soil around healthy tomato plants in a polyvinyl house, where most of the other plants showed bacterial wilt symptoms. The strains were screened in vitro for their antibacterial activity. Among them, a strain, KPB3 showed strong bactericidal activity against bacterial wilt pathogen, Ralstonia solanacearum. The strain KPB3 was identified using physiological and biochemical tests, and 16S rRNA analyses. Based on these tests, the strain was found to be closer to genus Paenibacillus. To control the bacterial wilt caused by R. solanacearum, greenhouse experiments were conducted to determine the effectiveness of the Paenibacillus strain KPB3. Drench application of this strain ($4{\times}10^8$ CFU $mL^{-1}$) into the pots containing tomato plants, post-inoculated with the pathogen, R. solanacearum could drastically reduce the disease severity, compared to the non-treated plants. To evaluate effectiveness of this strain under field conditions, experiments were carried out in polyvinyl houses infested with R. solanacearum, during spring and autumn of the year 2006. It was observed that, during spring, bacterial wilt was more prevalent compared to the autumn. During spring, 50.9% disease incidences occurred in non-treated controls, while, Paenibacillus strain KPB3 treated plants showed 24.6% disease incidences. Similarly, during autumn, around 17.2% plants were infected with bacterial wilt in non- treated polyvinyl houses, compared to the Paenibacillus strain KPB3 treated plants, which showed 7.0% disease incidences. These results demonstrated that, Paenibacillus strain KPB3 is a potential biological control agent against bacterial wilt caused by R. solanacearum, effective under greenhouse as well as field conditions. This is the first report showing biocontrol of R. solanacearum using a Paenibacillus spp. under field conditions.

Development of sequential sampling plan for Frankliniella occidentalis in greenhouse pepper (고추 온실에서 꽃노랑총채벌레의 축차표본조사법 개발)

  • SoEun Eom;Taechul Park;Kimoon Son;Jung-Joon Park
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.2
    • /
    • pp.164-171
    • /
    • 2022
  • Frankliniella occidentalis is an invasive pest insect, which affects over 500 different species of host plants and transmits viruses (tomato spotted wilt virus; TSWV). Despite their efficiency in controling insect pests, pesticides are limited by residence, cost and environmental burden. Therefore, a fixed-precision level sampling plan was developed. The sampling method for F. occidentalis adults in pepper greenhouses consists of spatial distribution analysis, sampling stop line, and control decision making. For sampling, the plant was divided into the upper part(180 cm above ground), middle part (120-160 cm above ground), and lower part (70-110 cm above ground). Through ANCOVA, the P values of intercept and slope were estimated to be 0.94 and 0.87, respectively, which meant there were no significant differences between values of all the levels of the pepper plant. In spatial distribution analysis, the coefficients were derived from Taylor's power law (TPL) at pooling data of each level in the plant, based on the 3-flowers sampling unit. F. occidentalis adults showed aggregated distribution in greenhouse peppers. TPL coefficients were used to develop a fixed-precision sampling stop line. For control decision making, the pre-referred action thresholds were set at 3 and 18. With two action thresholds, Nmax values were calculated at 97 and 1149, respectively. Using the Resampling Validation for Sampling Program (RVSP) and the results gained from the greenhouses, the simulated validation of our sampling method showed a reasonable level of precision.

Selection of Filamentous Cyanobacteria and Optimization of Culture Condition for Recycling Waste Nutrient Solution (폐양액 활용을 위한 Filamentous Cyanobacteria의 선발 및 최적배양)

  • Yang, Jin-Chul;Chung, Hee-Kyung;Lee, Hyoung-Seok;Choi, Seung-Ju;Yun, Sang-Soon;Ahn, Ki-Sup;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.177-183
    • /
    • 2004
  • The discharge of waste nutrient solution from greenhouse to natural ecosystem leads to the accumulation of excess nutrients that results in contamination or eutrophication. There is a need to recycle the waste nutrient solution in order to prevent the environmental hazards. The amount and kind of nutrients in waste nutrient solution might be enough to grow photosynthetic microorganisms. Hence in the present study, we examined the growth and mass cultivation of cyanobacteria in the waste nutrient solution with an objective of removing N and P and concomitantly, its mass cultivation. Four photosynthetic filamentous cyanobacteria (Anabaena HA101, HA701 and Nostoc HN601, HN701) isolated from composts and soils of the Chungnam province were used as culture strains. Among the isolates, Nostoc HN601 performed faster growth rate and higher N and P uptake in the BG-II ($NO_3{^-}$) medium when compared to those of other cyanobacterial strains. Finally, the selected isolate was tested under optimum conditions (airflow at the rate of $1L\;min^{-1}$. in 15 L reactor, initial pH 8) in waste nutrient solution from tomato hydroponic in green house condition. Results showed to remove 100% phosphate from the waste nutrient solution in the tomato hydroponics recorded over a period of 7 days. The growth rate of Nostoc HN601 was $16mg\;Chl-a\;L^{-1}$ in the waste nutrient solution from tomato hydroponics with optimum condition, whereas growth rate of Nostoc HN601 was only $9.8mg\;Chl-a\;L^{-1}$ in BG-11 media. Nitrogen fixing capacity of Nostoc HN601 was $20.9nmol\;C_2H_4\;mg^{-1}\;Chl-a\;h^{-1}$ in N-free BG-11. The total nitrogen and total phosphate concentration of Nostoc HN601 were 63.3 mg N gram dry weight $(GDW)^{-1}$ and $19.1mg\;P\;GDW^{-1}$ respectively. Collectively, cyanobacterial mass production using waste nutrient solution under green house condition might be suitable for recycling and cleaning of waste nutrient solution from hydroponic culture system. Biomass of cyanobacteria, cultivated in waste nutrient solution, could be used as biofertilizer.

Influence of Post-planting Fertilizer Concentrations Supplied through Sub-irrigation in Winter Season Cultivation of Tomato on the Seedling Growth and Changes in the Chemical Properties of Root Media (저면관비 방법으로 동절기 토마토 육묘시 추비 농도가 묘 생장과 상토의 화학성 변화에 미치는 영향)

  • Park, In Sook;Shim, Chang Yong;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.1
    • /
    • pp.35-42
    • /
    • 2017
  • This research was conducted to investigate the influence of post-planting fertilizer concentrations on the growth of seedlings and changes of nutrient concentrations of media in tomato seedling production through sub-irrigation. Two root media such as peat moss (grade of 0 to 6 mm, PM06) plus perlite (grade of 1 to 2 mm (PE2)(7:3, v/v) and peat moss (grade of 5 to 15 mm, PM515) plus PE2 (7:3, v/v) were formulated and filled into 72-cell plug trays. After seeds of 'Dotaerang Dia' tomato were sown and germinated at $28^{\circ}C$, the trays were moved to greenhouse and seedlings were raised 35 days. When the cotyledons were emerged, post-planting fertilizers of 13-2-13, 15-0-15 and 20-9-20 ($N-P_2O_5-K_2O$) were applied in a sequence. The fertilizer concentrations based on N in each plug stage were differed with $25mg{\cdot}L^{-1}$ in three treatments. The fertilizer solutions were supplied when the weight of plug trays decreased to 40 to 50% compared to container capacity. The root media were collected in 1, 2, 4, and 5 weeks after sowing and were divided into top, middle, and bottom parts, then were analysed for pH, EC and macro-nutrient concentrations. The seedling growth was investigated 5 weeks after sowing. The pH and EC in PM06+PE2 was higher than those of PM515+PE2. The bottom and mid-part had higher pH and lower EC compared to upper part in each medium. The differences of EC between upper and bottom parts were around 2 times in each medium. The $NH_4-N$ and K concentrations in program 3 of PM06+PE2 showed the highest concentrations among all treatments. The $NO_3-N$ concentrations in PM06+PE2 increased gradually and this rising tendency become severe as post-planting fertilizer concentrations were elevated. The seedling growth in terms of fresh and dry weights was the highest in the treatment of program 2 in PM06+PE2 among all treatments tested. Above results indicate that the gradual increases of fertilizer concentrations from 25 to $125mg{\cdot}L^{-1}$ in plug stages 2, 3, and 4 plug stages are desirable for

Effect of Fertigation with Indigenous Microorganism and EM on Soil Chemical and Microbial Properties and Growth of Cherry Tomatoes (토착미생물과 EM 활용 액비 처리가 방울토마토의 토양 화학성과 미생물상 및 생장에 미치는 영향)

  • Choi, Hyun-Sug;Jung, Ji-Sik;Kuk, Yong-In;Choi, In-Young;Jung, Seok-Kyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.15-24
    • /
    • 2019
  • The study was compared for soil chemical and microbial properties as well as growth of the cherry tomato (Lycopersicon esculentum var. cerasiforme) plants environmentally friendly gown for 3 years and 5 years, which had been fertigated with homemade liquid fertilizer (LF) with indigenous microorganism as an additional fertilizer. Treatment included LF with indigenous microorganism for 3 years (3-year IM-LF) and for 5 years (5-year IM-LF), with an effective microorganism for 10 years (EM-LF), which had been applied with 1,000 times of dilution in the farmhouse. IM-LF and EM-LF materials had increased pH pattern for 16 weeks, in particular for increase of 1.2 for EM-LF. IM-LF material contained slightly higher EC but similar level of 0.2 dS/m to EM-LF. For a pot experiment in the greenhouse, IM-LF treatment increased root dry weight of the cherry tomato plants. In the farmhouse experiment, IM-LF treatment increased to 7.5 of soil pH and 8.4 dS/m of EC, indicating high salt accumulation. EM-LF treatment increased to 62 g/kg of soil OM, which would have affected concentrations of macro essential nutrients, including T-N in the soil. However, the optimum soil chemical levels for growth of cherry tomato plants were observed on the IM-LF plots. EM-LF treatment increased number of bacteria and actinobacteria in the soil. EM-LF treatment increased concentrations of macro essential nutrients in the plants, except for P, with similar nutrient concentrations observed between 3-year IM-LF and 5-year IM-LF-treated plants. Leaf SPAD and PS II levels decreased in the plants treated with 3-year IM-LF. EM-LF treatment increased leaf width and length, number of leaves, canopy area, plant height, and stem diameter in the mid-term stage of growth, which were not significantly different between the treatments. EM-LF treated-plants had two times higher leaf dry weight than those of values observed on the IM-LF plants, which was the opposite result observed on the number of fruit.

Development of Optimal Nutrient Solution for Tomato Substrate Culture in Closed System (토마토의 순환식 고형배지재배에 적합한 배양액 개발)

  • 최은영;이용범;김재영
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.43-54
    • /
    • 1998
  • This experiment was conducted to develop optimal nutrient solution for tomato plants, according to the plant growth stages in closed system. Perlite substrate was supplied with 1/2 and 1 strength of the solution of National Horticultural Research Station in Japan. Plants grew better and the nutrient_contents in the leaves were also proper in 1 strength. Based on these results, optimal nutrient solution in perlite was composed by n/w of 1 strength according to the plant growth rates : N 13.5, P 3.3, K 7.0, Ca 7.0, Mg 3.5 me.L$^{-1}$ in seedling stage, N 14.2, P 3.3, K 8.0, Ca 7.5, Mg 4.0 me.L$^{-1}$ in vegetative stage and N 10.0, P 3.0, K 7.0, Ca 6.0, Mg 3.0 me.L$^{-1}$ in reproductive stage. To examine the suitability of the nutrient solution developed in this experiment, tomato plants were grown in rockwool and supplied with two different composition and concentration of nutrient solution composed by n/w of 1 strength in perlite (SCUT) and by Research Station for Greenhouse Vegetable and Floriculture on the Netherlands (PBG). PH and EC in SCUT were changed little in 1 strength but a significant change of PH was shown in 1/2 strength. Later, drained solutions in rockwool were also analyzed according to the Plant growth stages. Low concentrations of N and P in root zone were shown in early growth stage but N was increased in reproductive stage, while, K, Ca, Mg concentration was consistent through the whole growth stage. Considering these results, we found that the rebalance of N and P was needed, that is, reduction of N concentration in reproductive stage and increasing of P concentration in vegetative stage.

  • PDF