DOI QR코드

DOI QR Code

Development of sequential sampling plan for Frankliniella occidentalis in greenhouse pepper

고추 온실에서 꽃노랑총채벌레의 축차표본조사법 개발

  • SoEun Eom (Department of Plant Medicine, Gyeongsang National University) ;
  • Taechul Park (Department of Plant Medicine, Gyeongsang National University) ;
  • Kimoon Son (Department of Plant Medicine, Gyeongsang National University) ;
  • Jung-Joon Park (Department of Plant Medicine, Gyeongsang National University)
  • 엄소은 (경상국립대학교 식물의학과) ;
  • 박태철 (경상국립대학교 식물의학과) ;
  • 손기문 (경상국립대학교 식물의학과) ;
  • 박정준 (경상국립대학교 식물의학과)
  • Received : 2022.06.06
  • Accepted : 2022.06.15
  • Published : 2022.06.30

Abstract

Frankliniella occidentalis is an invasive pest insect, which affects over 500 different species of host plants and transmits viruses (tomato spotted wilt virus; TSWV). Despite their efficiency in controling insect pests, pesticides are limited by residence, cost and environmental burden. Therefore, a fixed-precision level sampling plan was developed. The sampling method for F. occidentalis adults in pepper greenhouses consists of spatial distribution analysis, sampling stop line, and control decision making. For sampling, the plant was divided into the upper part(180 cm above ground), middle part (120-160 cm above ground), and lower part (70-110 cm above ground). Through ANCOVA, the P values of intercept and slope were estimated to be 0.94 and 0.87, respectively, which meant there were no significant differences between values of all the levels of the pepper plant. In spatial distribution analysis, the coefficients were derived from Taylor's power law (TPL) at pooling data of each level in the plant, based on the 3-flowers sampling unit. F. occidentalis adults showed aggregated distribution in greenhouse peppers. TPL coefficients were used to develop a fixed-precision sampling stop line. For control decision making, the pre-referred action thresholds were set at 3 and 18. With two action thresholds, Nmax values were calculated at 97 and 1149, respectively. Using the Resampling Validation for Sampling Program (RVSP) and the results gained from the greenhouses, the simulated validation of our sampling method showed a reasonable level of precision.

꽃노랑총채벌레(Frankliniella occidentalis)는 500종 이상의 기주를 가지고 토마토반점위조바이러스(Tomato spotted wilt virus; TSWV)를 매개하는 해충이다. 전 세계적으로 방제를 위해 노력하고 있지만 살충제를 이용한 방제는 저항성 그리고 환경 및 경제적 부담으로 인한 한계를 보였기 때문에 고정 정확도를 설정한 표본조사법(Fixed-precision level sampling plan)을 개발하였다. 고추(Capsicum annuum)의 꽃노랑총채벌레 성충 방제를 위한 표본 조사법은 공간분포분석, 표본추출 정지선 그리고 의사결정법으로 구성되었다. 표본추출은 식물체를 상단(지상에서 180 cm 이상), 중단(지상에서 120~160 cm 이상), 하단(지상에서 70~110 cm 이상)으로 나누어 각 높이별로 꽃 3개에서 나오는 꽃노랑총채벌레의 성충의 마리 수를 조사하였다. 표본 추출을 통해 꽃노랑총채벌레 성충의 밀도는 다른 식물체 위치(중단, 하단)보다 상단에서 높은 것으로 나왔다. 공간분포분석에서는 Taylor's power law (TPL)를 통해 도출한 각 위치별 계수를 공분산분석(ANCOVA)하여 차이를 비교하였다. ANCOVA 결과에서 도출된 절편과 기울기의 P 값이 각각 0.94, 0.87인 것을 통해 식물체 내 위치별로 차이가 없음을 확인한 후, 자료를 통합(pooling)하여 계산된 TPL 계수를 이용하여 표본추출 정지선을 구하였다. 꽃노랑총채벌레의 방제의사결정을 위한 방제밀도 수준(m0)은 문헌을 참조하여 3과 18로 설정하였으며 설정값(m0)을 이용해 최대표본수(Nmax)도 조사하였다. 조사 결과, m0=3, 18일 때 Nmax값은 각각 약 97개, 1149개로 계산되었다. 개발된 모델의 적합성 검정을 위해 분석에 사용하지 않은 독립자료를 이용해 Resampling Validation for Sampling Program (RVSP) 프로그램으로 개발된 표본추출법의 적합성 평가를 실시하였고 적합한 정확도를 보이는 것으로 조사되었다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 공동연구사업(과제번호: PJ01578903)의 지원에 의해 이루어졌다.

References

  1. Binns MR and JP Nyrop. 1992. Sampling insect populations for the purpose of IPM decision making. Annu. Rev. Entomol. 37:427-453.  https://doi.org/10.1146/annurev.en.37.010192.002235
  2. Choi W and JJ Park. 2015. Development of sequential sampling plan for Bemisia tabaci in paprika greenhouses. Korean J. Appl. Entomol. 54:159-167.  https://doi.org/10.5656/KSAE.2015.06.0.019
  3. Demirozer O, K Tyler-Julian, J Funderburk, N Leppla and S Reitz. 2012. Frankliniella occidentalis (Pergande) integrated pest management programs for fruiting vegetables in Florida. Pest Manag. Sci. 68:1537-1545.  https://doi.org/10.1002/ps.3389
  4. Gao Y, Z Lei and SR Reitz. 2012. Western flower thrips resistance to insecticides: detection, mechanisms and management strategies. Pest Manag. Sci. 68:1111-1121.  https://doi.org/10.1002/ps.3305
  5. Green RH. 1970. On fixed precision level sequential sampling. Popul. Ecol. 12:249-251.  https://doi.org/10.1007/BF02511568
  6. Han MJ, IS Kim, SB Ahn, ML Lee, KJ Hong, GH Lee and DS Ku. 1998. Distribution and host plants of recently introduced western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in Korea. RDA J. Crop Prot. 40:83-88. 
  7. Iwao SI. 1975. A new method of sequential sampling to classify populations relative to a critical density. Popul. Ecol. 16:281-288.  https://doi.org/10.1007/BF02511067
  8. Jensen SE. 2000. Insecticide resistance in the western flower thrips, Frankliniella occidentalis. Integr. Pest Manag. Rev. 5:131-146.  https://doi.org/10.1023/A:1009600426262
  9. Katayama H. 1997. Effect of temperature on development and oviposition of western flower Thrips, Frankliniella occidentalis (Pergande). Jpn. J. Appl. Entomol. Zool. 41:225-231.  https://doi.org/10.1303/jjaez.41.225
  10. Kim C. 2000. Review of disease incidence of major crops in 2000. Korean J. Pestic. Sci. 5:1-11. 
  11. Kim C, D Choi, D Lee, F Khan, G Kwon, E Ham, JJ Park, EJ Kil and Y Kim. 2022. Yearly occurrence of thrips infesting hot pepper in greenhouses and differential damages of dominant thrips. Korean J. Appl. Entomol. 61:319-330. 
  12. KCPA. 2020. Agrochemicals User's Guide Book. Korea Crop Protection Association. Seoul. https://www.koreacpa.org/ko/use-book.(accessed on 05 May, 2022) 
  13. KOSIS. 2020. Area of cultivation of outdoor vegetables. Korean Statistical Information Service. Statistics Korea. Daejeon, Korea. https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0013&vw_cd=MT_ZTITLE&list_id=K1_15&seqNo=&lang_mode=ko&language=kor&obj_var_id=&itm_id=&conn_path=MT_ZTITLE.(accessed on 05 May, 2002) 
  14. Kuno E. 1969. A new method of sequential sampling to obtain the population estimates with a fixed level of precision. Popul. Ecol. 11:127-136.  https://doi.org/10.1007/BF02936264
  15. Lee S, J Lee, S Kim, H Choi, J Park, J Lee, K Lee and J Moon. 2004. The incidence and distribution of viral diseases in pepper by cultivation types. Res. Plant Dis. 10:231-240.  https://doi.org/10.5423/RPD.2004.10.4.231
  16. Lee YS, HA Lee, HJ Lee, SS Hong, CS Kang, YS Choi and MJ Jang. 2017. Insecticide susceptibility of western flower thrip, Frankliniella occidentalis (Thysanoptera: Thripidae) on horticultural crops in Gyeonggi area. Korean J. Appl. Entomol. 56:179-186. 
  17. Naranjo SE and WD Hutchision. 1997. Quantitative methods for designing and analyzing sampling programs for use in pest management. pp. 67-132. In: Handbook of Pest Management in Agriculture (Pimental D, ed.). CRC Press. Boca Raton, FL. 
  18. Park HH, KH Kim, CG Park, BR Choi, JJ Kim, SW Lee and SG Lee. 2009. Damege analysis and control threshold of Frankliniella occidentalis Pergande (Thysanoptera: Tripidae) on greenhouse eggplant and sweet pepper. Korean J. Appl. Entomol. 48:229-236.  https://doi.org/10.5656/KSAE.2009.48.2.229
  19. Park JJ, H Park, YH Kim and K Cho. 1999. Sampling plans for estimating and classifying population density of two spotted spider mite (Acari: Tetranychidae) on the greenhouse rose grown by arching method. Korean J. Entomol. 29:127-134. 
  20. Park SH, JH Lee, JH Woo, SY Choi, SD Park and HH Park. 2014. Economic injury level of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidate) on oriental melon (Cucumis melo L.) in greenhouse. Korean J. Pestic. 18:196-201.  https://doi.org/10.7585/kjps.2014.18.3.196
  21. Pedigo LP and GD Buntin. 1994. Introduction to sampling arthropod populations. pp. 1-11. In: Handbook of Sampling Methods for Arthropods in Agriculture (Pedigo LP and GD Buntin, eds.). CRC press. Boca Raton, FL. 
  22. Reitz SR, Y Gao, WD Kirk, MS Hoddle, KA Leiss and JE Funderburk. 2020. Invasion biology, ecology, and management of western flower thrips. Annu. Rev. Entomol. 65:17-37.  https://doi.org/10.1146/annurev-ento-011019-024947
  23. SAS Institute. 2010. SAS/STAT® 9.22. User's Guide. SAS Institute. Cary, NC.
  24. Seo J, Y Yi, B Kim, JM Hwang and SW Choi. 2011. Disease occurrence on red-pepper plants surveyed in Northern Kyungbuk province, 2007-2008. Res. Plant Dis. 17:205-210.  https://doi.org/10.5423/RPD.2011.17.2.205
  25. Sokal RR and FJ Rohlf. 1981. Biometry. Macmillian Publish. NY. 
  26. Southwood TRE. 1978. Ecological Methods. Chapman and Hall Publish. London. 
  27. Southwood TRE and PA Henderson. 2000. Ecological Methods, 3rd ed. Blackwell Science, Ltd., Oxford, London. 
  28. Stafford CA, GP Walker and DE Ullman. 2011. Infection with a plant virus modifies vector feeding behavior. Proc. Natl. Acad. Sci. USA 108:9350-9355.  https://doi.org/10.1073/pnas.1100773108
  29. Taylor LR. 1961. Aggregation, variance and the mean. Nature 189:732-735.  https://doi.org/10.1038/189732a0
  30. Ullah MS and UT Lim. 2015. Life history characteristics of Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae) in constant and fluctuating temperatures. J. Econ. Entomol. 108:1000-1009.  https://doi.org/10.1093/jee/tov035
  31. Wise IL and RJ Lamb. 1995. Spatial distribution and sequential sampling methods for the popato aphid, Macrosiphum euphorbiae (Thomas) (Homoptera: Aphididae), in oilseed flax. Can. Entomol. 127:967-976.  https://doi.org/10.4039/Ent127967-6
  32. Zar JH. 1999. Biostatistical Analysis, 4th ed. Prentice Hall, Inc. Hoboken, NJ.