• Title/Summary/Keyword: Tolerance-Accumulation

Search Result 227, Processing Time 0.024 seconds

Lifespan Extending and Stress Resistant Properties of Vitexin from Vigna angularis in Caenorhabditis elegans

  • Lee, Eun Byeol;Kim, Jun Hyeong;Cha, Youn-Soo;Kim, Mina;Song, Seuk Bo;Cha, Dong Seok;Jeon, Hoon;Eun, Jae Soon;Han, Sooncheon;Kim, Dae Keun
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.582-589
    • /
    • 2015
  • Several theories emphasize that aging is closely related to oxidative stress and disease. The formation of excess ROS can lead to DNA damage and the acceleration of aging. Vigna angularis is one of the important medicinal plants in Korea. We isolated vitexin from V. angularis and elucidated the lifespan-extending effect of vitexin using the Caenorhabditis elegans model system. Vitexin showed potent lifespan extensive activity and it elevated the survival rates of nematodes against the stressful environments including heat and oxidative conditions. In addition, our results showed that vitexin was able to elevate antioxidant enzyme activities of worms and reduce intracellular ROS accumulation in a dose-dependent manner. These studies demonstrated that the increased stress tolerance of vitexin-mediated nematode could be attributed to increased expressions of stress resistance proteins such as superoxide dismutase (SOD-3) and heat shock protein (HSP-16.2). In this work, we also studied whether vitexin-mediated longevity activity was associated with aging-related factors such as progeny, food intake, growth and movement. The data revealed that these factors were not affected by vitexin treatment except movement. Vitexin treatment improved the body movement of aged nematode, suggesting vitexin affects healthspan as well as lifespan of nematode. These results suggest that vitexin might be a probable candidate which could extend the human lifespan.

Transgenic Tobacco Plants Expressing the Bacterial Levansucrase Gene Show Enhanced Tolerance to Osmotic Stress

  • Park, Jeong-Mee;Kwon, Suk-Yoon;Song, Ki-Bang;Kwak, Ju-Won;Lee, Suk-Bae;Nam, Young-Woo;Shin, Jeong-Sheop;Park, Young-In;Rhee, Sang-Ki;Paek, Kyung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.213-218
    • /
    • 1999
  • Fructans are polyfructose molecules that function as nonstructural storage carbohydrates in several plants. In addition, it has been suggested that, due to their solubility, they can play an important role in helping plants survive periods of osmotic stress. In order to study the effect of levan synthesis on plant growth, the coding region of the levansucrase gene, which was isolated from Zymomonas mobilis, was introduced into tobacco plants using Agrobacterium tumefaciens-mediated transformation. The presence of the levansucrase gene in transgenic plants was verified by genomic DNA gel blot analysis. RNA gel blot and immunoblot analyses showed an accumulation of the corresponding transcript and protein product of the bacterial levansucrase gene in transgenic plants. Furthermore, a thin layer chromatography analysis revealed that fructans were synthesized and deposited in transgenic tobacco plants. When $T_1$ seeds were germinated and grown under polyethylene glycol-mediated drought stress or cold stress, the transgenic seedlings displayed a substantially higher level of growth than that of untransformed plants. These results suggest that fructans may playa significant role in the tolerance of plants under osmotic stress.

  • PDF

Single-Base Genome Editing in Corynebacterium glutamicum with the Help of Negative Selection by Target-Mismatched CRISPR/Cpf1

  • Kim, Hyun Ju;Oh, Se Young;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1583-1591
    • /
    • 2020
  • CRISPR/Cpf1 has emerged as a new CRISPR-based genome editing tool because, in comparison with CRIPSR/Cas9, it has a different T-rich PAM sequence to expand the target DNA sequence. Single-base editing in the microbial genome can be facilitated by oligonucleotide-directed mutagenesis (ODM) followed by negative selection with the CRISPR/Cpf1 system. However, single point mutations aided by Cpf1 negative selection have been rarely reported in Corynebacterium glutamicum. This study aimed to introduce an amber stop codon in crtEb encoding lycopene hydratase, through ODM and Cpf1-mediated negative selection; deficiency of this enzyme causes pink coloration due to lycopene accumulation in C. glutamicum. Consequently, on using double-, triple-, and quadruple-base-mutagenic oligonucleotides, 91.5-95.3% pink cells were obtained among the total live C. glutamicum cells. However, among the negatively selected live cells, 0.6% pink cells were obtained using single-base-mutagenic oligonucleotides, indicating that very few single-base mutations were introduced, possibly owing to mismatch tolerance. This led to the consideration of various target-mismatched crRNAs to prevent the death of single-base-edited cells. Consequently, we obtained 99.7% pink colonies after CRISPR/Cpf1-mediated negative selection using an appropriate single-mismatched crRNA. Furthermore, Sanger sequencing revealed that single-base mutations were successfully edited in the 99.7% of pink cells, while only two of nine among 0.6% of pink cells were correctly edited. The results indicate that the target-mismatched Cpf1 negative selection can assist in efficient and accurate single-base genome editing methods in C. glutamicum.

Effect of Nitric Oxide on Paraquat-Tolerance in Lettuce Leaves (상추잎의 Paraquat 내성에 미치는 Nitric oxide의 영향)

  • Lee, Jee-Na;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.20 no.12
    • /
    • pp.1509-1519
    • /
    • 2011
  • The protective effect of nitric oxide (NO) on the antioxidant system under paraquat(PQ) stress was investigated in leaves of 8-week-old lettuce (Lactuca sativa L.) plants. PQ stress caused a decrease of leaf growth including leaf length, width and weight. Application of NO donor, sodium nitroprusside (SNP), significantly alleviated PQ stress induced growth suppression. SNP permitted the survival of more green leaf tissue preventing chlorophyll content reduction and of higher quantum yield for photosystem II than in non-treated controls under PQ exposure, suggesting that NO has protective effect on chloroplast membrane in lettuce leaves. Flavonoids and anthocyanin were significantly accumulated in the leaves upon PQ exposure. However, the rapid increase of these compounds was alleviated in the SNP treated leaves. PQ treatment resulted in lipid peroxidation and induced accumulation of hydrogen peroxide ($H_2O_2$) in the leaves, while SNP prevented PQ induced increase in malondialdehyde (MDA) and $H_2O_2$. These results demonstrate that SNP serves as an antioxidant agent able to scavenge $H_2O_2$ to protect plant cells from oxidative damage. The activities of two antioxidant enzymes that scavenge reactive oxygen species, superoxide dismutase (SOD) and catalase (CAT) in lettuce leaves in the presence of NO donor under PQ stress were higher than those under PQ stress alone. Application of 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a specific NO scavenger, to the lettuce leaves arrested SNP mediated protective effect on leaf growth, photosynthetic pigment and antioxidant systems. However, PTIO had little effect on lettuce leaves under PQ stress compared with that of PQ stress alone. The obtained data suggest that the damage caused by PQ stress is in part due to increased generation of active oxygen by maintaining increased antioxidant enzyme activities and SNP protects plants from oxidative stress. From these results it is suggested that NO might act as a signal in activating active oxygen scavenging system that protects plants from oxidative damage induced by PQ stress and thus confer PQ tolerance.

Soil salinity shifts the community structure and diversity of seed bacterial endophytes of salt-sensitive and tolerant rice cultivars

  • Walitang, Denver I.;Ahmed, Shamim;Jeon, Sunyoung;Pyo, Chaeeun;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.244-244
    • /
    • 2017
  • Soil salinity due to accumulation of salts particularly sodium chloride affects agricultural lands and their vegetation. Generally, rice is a moderately sensitive plant with some cultivars with varying tolerance to salinity. Though there are physiological differences between salt-sensitive and salt-tolerant rice cultivars, both are still affected especially during high salinity and prolonged exposure. This also ultimately affects their indigenous bacterial endophytes particularly those that inhabit the rice seed endosphere. This study investigates the dynamic structure of seed bacterial endophytes of salt-sensitive and tolerant rice cultivars grown in different levels of soil salinity. Endophytic bacterial diversity was studied Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis. Results revealed a very interesting pattern of diversity and shifts in community structure of bacterial endophytes in the rice seeds. There is a general decrease in diversity for the salt-sensitive rice cultivar, IR29 as soil salinity increases. For the salt-tolerant cultivars, IC32 and IC37, diversity interestingly increased at moderate salinity then decreased at high soil salinity. The patterns of community structure is also strikingly different for the salt-sensitive and salt-tolerant rice cultivars. IR29 has a more even distribution of abundance, but under soil salinity, the community shifted where Curtobacterium, Pantoea, Flavobacterium and Microbacterium become the more dominant bacterial communities. For IC32 and IC37, the dominant bacterial groups under normal stress conditions were also the dominant bacterial groups during salt stress conditions. Their seed bacterial community is dominated by endophytes belonging to Microbacterium, Flavobacterium, Pantoea, Kosakonia and Enterobacter. Stenotrophomonas and Xanthomonas have not changed in terms of abundance under different salinity stress level in the salt-sensitive and salt-tolerant rice cultivars. This study showed that soil salinity greatly influenced the seed bacterial communities of rice seeds irrespective of their physiological tolerance to salinity.

  • PDF

Anti-oxidative Activity of Ethyl acetate Fraction of the Dried Ginger in Caenorhabditis elegans (건강 에틸아세테이트 분획의 예쁜꼬마선충 내의 항산화 효과)

  • Lee, Eun Byeol;Kim, Jun Hyeong;Leem, Jae-Yoon;Kim, Hye-Soo;Kim, Dae-Sung;Eun, Jae Soon;Han, Sooncheon;Kim, Dae Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.2
    • /
    • pp.179-185
    • /
    • 2016
  • Ginger (Zingiber officnale Roscoe, Zingiberaceae), which is a well-known food seasoning, has been used as a traditional medicine for the treatment of gastrointestinal disorder, vomiting and cough in Korea, China and Japan. Ethanol extract from the dried ginger (DG) was successively partitioned as methylene chloride, ethyl acetate, n-butanol and $H_2O$ soluble fractions. Among those fractions the ethyl acetate soluble fraction (EDG) showed the most potent DPPH radical scavenging and superoxide quenching activities. To know the effect of antioxidant activities of EDG, we tested the activities of superoxide dismutase (SOD) and catalase together with oxidative stress tolerance and intracellular ROS level in Caenorhabditis elegans. To investigate whether EDG-mediated increased stress tolerance was due to regulation of stress-response gene, we quantified SOD-3 expression using transgenic strain including CF1553. Consequently, EDG elevated SOD and catalase activities of C. elegans, reduced intracellular ROS accumulation in a dose-dependent manner. Moreover, EDG-treated CF1553 worms exhibited significantly higher SOD-3::GFP intensity.

Antioxidant Activity of n-Butanol Fraction of Chaenomeles sinensis Fruit in Caenorhabditis elegans (모과 부탄올 분획의 예쁜꼬마선충 내의 항산화 효과)

  • Kim, Jun Hyeong;An, Chang Wan;Kim, Yeong Jee;Noh, Yun Jeong;Kim, Su Jin;Kim, Ju-Eun;Shrestha, Abinash Chandra;Ham, Ha-Neul;Leem, Jae-Yoon;Jo, Hyung-Kwon;Kim, Dae-Sung;Moon, Kwang Hyun;Lee, Jeong Ho;Jeong, Kyung Ok;Kim, Dae Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • Chaenomeles sinensis (Thouin) Koehne fruit (Rosaceae) has been used as a traditional medicine in Korea, Japan and China to treat sore throat, diarrhea and inflammation. The ethanol extract of C. sinensis fruit was successively partitioned as methylene chloride, ethyl acetate, n-butanol and $H_2O$ soluble fractions. Among those fractions, the n-butanol fraction showed the most potent DPPH radical scavenging and superoxide quenching activities. To verify antioxidant activities, the n-butanol fraction was checked the activities of superoxide dismutase (SOD) and catalase activities, and intracellular ROS levels and oxidative stress tolerance in Caenorhabditis elegans. Furthermore, to see if increased stress tolerance of worms by treating of the n-butanol fraction was due to regulation of stress-response gene, we quantified SOD-3 expression using transgenic strain. Consequently, the n-butanol fraction elevated SOD and catalase activities of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Moreover, the n-butanol fraction-treated CF1553 worms exhibited significantly higher SOD-3::GFP intensity.

Anti-oxidative Effect of Epimedii Herba in Caenorhabditis elegans (음양곽의 예쁜꼬마선충 내의 항산화 효과)

  • Kim, Jun Hyeong;An, Chang Wan;Kim, Yeong Jee;Noh, Yun Jeong;Kim, Su Jin;Hwang, In Hyun;Jeon, Hoon;Cha, Dong Seok;Shin, Tae-Yong;Kim, Dae Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.4
    • /
    • pp.298-303
    • /
    • 2017
  • To know the anti-oxidative effect of Epimedii Herba (Berberidaceae), the methanol extract of this plant was investigated by using a Caenorhabditis elegans model system. The methanol extract of this plant showed relatively significant DPPH radical scavenging and superoxide quenching activities. The ethyl acetate soluble fraction of Epimedii Herba (EHE), which showed the most potent DPPH radical scavenging and superoxide quenching activities, was tested on its effects on superoxide dismutase (SOD), catalase, intracellular ROS, and oxidative stress tolerance in Caenorhabditis elegans. Furthermore, in order to verify that regulation of stress-response genes is responsible for the increased stress tolerance of the EHE treated C. elegans, we checked SOD-3 expression using a transgenic strain. As a result, the EHE increased SOD and catalase activities of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Besides, EHE-treated CF1553 worms showed higher SOD-3::GFP intensity than that of non-treated controls.

Response of Saccharomyces cerevisiae to Ethanol Stress Involves Actions of Protein Asr1p

  • Ding, Junmei;Huang, Xiaowei;Zhao, Na;Gao, Feng;Lu, Qian;Zhang, Ke-Qin
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1630-1636
    • /
    • 2010
  • During the fermentation process of Saccharomyces cerevisiae, yeast cells must rapidly respond to a wide variety of external stresses in order to survive the constantly changing environment, including ethanol stress. The accumulation of ethanol can severely inhibit cell growth activity and productivity. Thus, the response to changing ethanol concentrations is one of the most important stress reactions in S. cerevisiae and worthy of thorough investigation. Therefore, this study examined the relationship between ethanol tolerance in S. cerevisiae and a unique protein called alcohol sensitive RING/PHD finger 1 protein (Asr1p). A real-time PCR showed that upon exposure to 8% ethanol, the expression of Asr1 was continuously enhanced, reaching a peak 2 h after stimulation. This result was confirmed by monitoring the fluorescence levels using a strain with a green fluorescent protein tagged to the C-terminal of Asr1p. The fluorescent microscopy also revealed a change in the subcellular localization before and after stimulation. Furthermore, the disruption of the Asr1 gene resulted in hypersensitivity on the medium containing ethanol, when compared with the wild-type strain. Thus, when taken together, the present results suggest that Asr1 is involved in the response to ethanol stress in the yeast S. cerevisiae.

Anti-oxidative Effects of Allium hookeri Leaves in Caenorhabditis elegans (삼채 잎의 예쁜꼬마선충 내의 항산화 효과)

  • Ki, Byeolhui;Lee, Eun Byeol;Kim, Jun Hyeong;Yang, Jae Heon;Kim, Dae Keun;Kim, Young-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.2
    • /
    • pp.141-147
    • /
    • 2017
  • As an ongoing study about Allium hookeri (Liliaceae), this study was performed to evaluate the anti-oxidative effect of the leaves of this plant. Ethanol extract of A. hookeri leaves was successively partitioned as methylene chloride, ethyl acetate, n-butanol and $H_2O$ soluble fractions. The ethyl acetate soluble fraction showed the most potent DPPH radical scavenging and superoxide quenching activities among those fractions. To prove antioxidant activity of ethyl acetate fraction of A. hookeri leaves, we checked the activities of superoxide dismutase (SOD) and catalase, and intracellular ROS level and oxidative stress tolerance in Caenorhabditis elegans. In addition, to verify if increased stress tolerance of C. elegans by treating of ethyl acetate fraction was due to regulation of stress-response gene, we checked SOD-3 expression using transgenic strain. As a consequence, the ethyl acetate fraction increased SOD and catalase activity of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Besides, the ethyl acetate fraction-treated CF1553 worms showed higher SOD-3::GFP intensity.