Browse > Article

Anti-oxidative Effect of Epimedii Herba in Caenorhabditis elegans  

Kim, Jun Hyeong (College of Pharmacy, Woosuk University)
An, Chang Wan (College of Pharmacy, Woosuk University)
Kim, Yeong Jee (College of Pharmacy, Woosuk University)
Noh, Yun Jeong (College of Pharmacy, Woosuk University)
Kim, Su Jin (College of Pharmacy, Woosuk University)
Hwang, In Hyun (College of Pharmacy, Woosuk University)
Jeon, Hoon (College of Pharmacy, Woosuk University)
Cha, Dong Seok (College of Pharmacy, Woosuk University)
Shin, Tae-Yong (College of Pharmacy, Woosuk University)
Kim, Dae Keun (College of Pharmacy, Woosuk University)
Publication Information
Korean Journal of Pharmacognosy / v.48, no.4, 2017 , pp. 298-303 More about this Journal
Abstract
To know the anti-oxidative effect of Epimedii Herba (Berberidaceae), the methanol extract of this plant was investigated by using a Caenorhabditis elegans model system. The methanol extract of this plant showed relatively significant DPPH radical scavenging and superoxide quenching activities. The ethyl acetate soluble fraction of Epimedii Herba (EHE), which showed the most potent DPPH radical scavenging and superoxide quenching activities, was tested on its effects on superoxide dismutase (SOD), catalase, intracellular ROS, and oxidative stress tolerance in Caenorhabditis elegans. Furthermore, in order to verify that regulation of stress-response genes is responsible for the increased stress tolerance of the EHE treated C. elegans, we checked SOD-3 expression using a transgenic strain. As a result, the EHE increased SOD and catalase activities of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Besides, EHE-treated CF1553 worms showed higher SOD-3::GFP intensity than that of non-treated controls.
Keywords
Epimedii Herba; Caenorhabditis elegans; Anti-oxidative effect; SOD; ROS;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Zhang, W., Chen, H., Wang, Z., Lan, G. and Zhang, L. (2013) Comparative studies on antioxidant activities of extracts and fractions from the leaves and stem of Epimedium koreanum Nakai. J. Food Sci. Technol. 50: 1122-1129.   DOI
2 Liu, L., Zuo, Z., Lu, S., Liu, A. and Liu, X. (2017) Naringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-${\kappa}B$ activation in vivo and in vitro. Iran J. Basic Med. Sci. 20: 813-821.
3 Farías, J. G., Molina, V. M., Carrasco, R. A., Zepeda, A. B., Figueroa, E., Letelier, P. and Castillo, R. L. (2017) Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress. Nutrients doi: 10.3390/nu9090966.   DOI
4 Wang, T., Zhang, J. C., Chen, Y., Huang, F., Yang, M. S.and Xia, O. P. G. (2007) Comparison of antioxidative and antitumor activities of six flavonoids from Epimedium koreanum. Zhongguo Zhong Yao Za Zhi. 32: 715-718.
5 Li, H. F., Guan, X. Y., Yang, W. Z., Liu, K. D., Ye, M., Sun, C., Lu, S. and Guo, D. A. (2012) Antioxidant flavonoids from Epimedium wushanense. Fitoterapia 83: 44-48.   DOI
6 Harman, D. (1992) Free radical theory of aging: history. EXS. 62: 1-10.
7 de Paulet, A. C. (1990) Free radicals and aging. Ann. Biol. Clin. (Paris) 48: 323-330.
8 den Endea, W. V., Pesheva, D. and Garab, L. D. (2011) Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Trends in Food Sci. Technol. 22: 689-697.   DOI
9 Ashok, B. T. and Ali, R. (1999) The aging paradox: free radical theory of aging. Exp. Gerontol. 34: 293-303.   DOI
10 Cedikova, M., Pitule, P., Kripnerova, M., Markova, M. and Kuncova, J. (2016) Multiple roles of mitochondria in aging processes. Physiol. Res. 65(Supplementum 5): S519-S531.
11 Niki, E., Yamamoto, Y., Komuro, E. and Sato, K. (1991) Membrane damage due to lipid oxidation. Am. J. Clin. Nutr. 53: 201S-205S.   DOI
12 Sarkar, D. and Fisher, P. B. (2006) Molecular mechanisms of aging-associated inflammation. Cancer Lett. 236: 13-23.   DOI
13 Sohal, R. S., Agarwal, A., Agarwal, S. and Orr, W. C. (1995) Simultaneous overexpression of copper- and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J. Biol. Chem. 270: 15671-15674.   DOI
14 Scandalios, J. G. (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 38: 995-1014.   DOI
15 Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabditis elegans. J. Med. Chem. 55: 4169-4177.   DOI
16 Branen, A. L. (1975) Toxicological and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc. 52: 59-63.   DOI
17 Hong, M.-J., Lee, B.-C., Ahn, Y.-M. and Ahn, S.-Y. (2011) The effects of Epimedii Herba on a hypothyroidism rat model induced by PTU(6-Propyl-2-thiouracil). Journal of Pharmacopuncture 14: 13-22.   DOI
18 Yoshida, T., Mori, K., Hatano, T., Okumura, T., Uehara, I., Komagoe, K., Fujita, Y. and Okuda, T. (1989) Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V: Radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 1919-1921.   DOI
19 Thuong, P. T., Kang, H. J., Na, M., Jin, W., Youn, U. J., Seong, Y. H., Song, K. S., Min, B. S. and Bae, K. (2007) Antioxidant constituents from Sedum takesimense. Phytochemistry 68: 2432-2438.   DOI
20 Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
21 Aebi, H. (1984) Catalase in vitro. Method. Enzymol. 105: 121-126.
22 Kim, H. N., Seo, H. W., Kim, B. S., Lim H. J., Lee, H, N., Park, J. S., Yoon, Y. J., Oh, J. W., Oh, M. J., Kwon, J., Oh, C. H., Cha, D. S. and Jeon, H. (2015) Lindera obtusiloba extends lifespan of Caenorhabditis elegans. Nat. Prod. Sci. 21: 128-133.
23 Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936.   DOI
24 Su, X. D., Li, W., Ma, J. Y. and Kim, Y. H. (2017) Chemical constituents from Epimedium koreanum Nakai and their chemotaxonomic significance. Nat. Prod. Res. doi.org/10.1080/14786419.2017.1405412.   DOI
25 Han, F. and Lee, I. S. (2017) A new flavonol glycoside from the aerial parts of Epimedium koreanum Nakai. Nat. Prod. Res. doi: 10.1080/14786419.2016.1239092.   DOI