Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.128

Lifespan Extending and Stress Resistant Properties of Vitexin from Vigna angularis in Caenorhabditis elegans  

Lee, Eun Byeol (College of Pharmacy, Woosuk University)
Kim, Jun Hyeong (College of Pharmacy, Woosuk University)
Cha, Youn-Soo (Department of Food Science and Human Nutrition, Chonbuk National University)
Kim, Mina (Department of Food Science and Human Nutrition, Chonbuk National University)
Song, Seuk Bo (Department of Functional Crop, National Institute of Crop Science, Rural Development Administration)
Cha, Dong Seok (College of Pharmacy, Woosuk University)
Jeon, Hoon (College of Pharmacy, Woosuk University)
Eun, Jae Soon (College of Pharmacy, Woosuk University)
Han, Sooncheon (College of Pharmacy, Woosuk University)
Kim, Dae Keun (College of Pharmacy, Woosuk University)
Publication Information
Biomolecules & Therapeutics / v.23, no.6, 2015 , pp. 582-589 More about this Journal
Abstract
Several theories emphasize that aging is closely related to oxidative stress and disease. The formation of excess ROS can lead to DNA damage and the acceleration of aging. Vigna angularis is one of the important medicinal plants in Korea. We isolated vitexin from V. angularis and elucidated the lifespan-extending effect of vitexin using the Caenorhabditis elegans model system. Vitexin showed potent lifespan extensive activity and it elevated the survival rates of nematodes against the stressful environments including heat and oxidative conditions. In addition, our results showed that vitexin was able to elevate antioxidant enzyme activities of worms and reduce intracellular ROS accumulation in a dose-dependent manner. These studies demonstrated that the increased stress tolerance of vitexin-mediated nematode could be attributed to increased expressions of stress resistance proteins such as superoxide dismutase (SOD-3) and heat shock protein (HSP-16.2). In this work, we also studied whether vitexin-mediated longevity activity was associated with aging-related factors such as progeny, food intake, growth and movement. The data revealed that these factors were not affected by vitexin treatment except movement. Vitexin treatment improved the body movement of aged nematode, suggesting vitexin affects healthspan as well as lifespan of nematode. These results suggest that vitexin might be a probable candidate which could extend the human lifespan.
Keywords
Vigna angularis; Vitexin; Caenorhabditis elegans; Lifespan extension; Stress tolerance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105, 121-126.   DOI
2 Ariga, T. and Asao, Y. (1981) Isolation, identification and organoleptic astringency of dimeric proanthocyanidins occurring in Azuki beans. Agric. Biol. Chem. 45, 2709-2712.   DOI
3 Borghi, S. M., Carvalho, T. T., Staurengo-Ferrari, L., Hohmann, M. S., Pinge-Filho, P., Casagrande, R. and Verri, W. A. Jr (2013) Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. J. Nat. Prod. 76, 1141-1149.   DOI
4 Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
5 Can, O. D., Ozkay, U. D. and Ucel, U. I. (2013) Anti-depressant-like effect of vitexin in BALB/c mice and evidence for the involvement of monoaminergic mechanisms. Eur. J. Pharmacol. 699, 250-257.   DOI
6 Chen, W., Sudji, I. R., Wang, E., Joubert, E., van Wyk, B. E. and Wink, M. (2013) Ameliorative effect of aspalathin from rooibos (Aspalathus linearis) on acute oxidative stress in Caenorhabditis elegans. Phytomedicine 20, 380-386.   DOI
7 Choi, J. S., Islam, Md. N., Ali, Md. Y., Kim, Eon. J. Y., Kim, M. and Jung, H. A. (2014) Effects of C-glycosylation on anti-diabetic, anti-Alzheimer's disease and anti-inflammatory potential of apigenin. Food Chem. Toxicol. 64, 27-33.   DOI
8 Chondrogianni, N., Voutetakis, K., Kapetanou, M., Delitsikou, V., Papaevgeniou, N., Sakellari, M., Lefaki, M., Filippopoulou, K. and Gonos, E. S. (2015) Proteasome activation: An innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res. Rev. 23, 37-55.   DOI
9 Choo, C. Y., Sulong, N. Y., Man, F. and Wong, T. W. (2012) Vitexin and isovitexin from the Leaves of Ficus deltoidea with in-vivo ${\alpha}$-glucosidase inhibition. J. Ethnopharmacol. 142, 776-781.   DOI
10 Feng, S., Cheng, H., Xu, Z., Shen, S., Yuan, M., Liu, J. and Ding, C. (2015) Thermal stress resistance and aging effects of Panax notoginseng polysaccharides on Caenorhabditis elegans. Int. J. Biol. Macromol. 81, 188-194.   DOI
11 Finkel, T. and Holbrook, N. J. (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-47.   DOI
12 Gruber, J., Fong, S., Chen, C.-B., Yoong, S., Pastorin, G., Schaffer, S., Cheah, I. and Halliwell, Barry (2013) Mitochondria-targeted antioxidants and metabolic modulators as harmacological interventions to slow ageing. Biotech. Adv. 31, 563-592.   DOI
13 Grunz, G., Haas, K., Soukup, S., Klingenspor, M., Kulling, S. E., Daniel, H. and Spanier, B. (2012) Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans. Mech. Ageing Dev. 133, 1-10.   DOI
14 Guarente, L. and Kenyon, C. (2000) Genetic pathways that regulate ageing in model organisms. Nature 408, 255-62.   DOI
15 Han, K. H., Fukushima, M., Ohba, K., Shimada, K., Sekikawa, M., Chiji, H., Lee, C. H. and Nakano, M. (2004) Hepatoprotective effects of the water extract from adzuki bean hulls on acetaminopheninduced damage in rat liver. J. Nutr. Sci. Vitaminol. 50, 380-383.   DOI
16 Itoh, T., Kobayashi, M., Horio, F. and Furuichi, Y. (2009) Hypoglycemic effect of hot-water extract of adzuki (Vigna angularis) in spontaneously diabetic KK-A(y) mice. Nutrition 25, 134-141.   DOI
17 Kim, J. H., Lee, B. C., Kim, J. H., Sim, G. S., Lee, D. H., Lee, K. E., Yun, Y. P. and Pyo, H. B. (2005) The isolation and antioxidative effects of vitexin from Acer palmatum. Arch. Pharm. Res. 28, 195-202.   DOI
18 Jiang, Y., Zeng, K. W., David, B. and Massiot, G. (2014) Constituents of Vigna angularis and their in vitro anti-inflammatory activity. Phytochemistry 107, 111-118.   DOI
19 Kenyon, C. J. (2010) The genetics of ageing. Nature 464, 504-512.   DOI
20 Khole, S., Chatterjee, S., Variyar, P., Sharma, A., Devasagayam, T.P.A. and Ghaskadbi, S. (2014) Bioactive constituents of germinated fenugreek seeds with strong antioxidant potential. J. Funct. Foods 6, 270-279.   DOI
21 Kimoto-Kinoshita, S., Nishida, S. and Tomura, T. T. (1999) Age-related change of antioxidant capacities in the cerebral cortex and hippocampus of stroke-prone spontaneously hypertensive rats. Neurosci. Lett. 273, 41-44.   DOI
22 Kitagawa, I., Wang, H. K., Saito, M. and Yoshikawa, M. (1983) Saponin and sapogenol. XXXI. Chemical constituents of the seeds of Vigna angularis (Willd.) Ohwi et Ohashi, (1) Triterpenoidal sapogenols and 3-furanmethanol ${\beta}$-D-glucopyranoside. Chem. Pharm. Bull. 31, 664-673.   DOI
23 Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328, 929-936.   DOI
24 Li, Y. L., Ma, S. C., Yang, Y. T., Ye, S. M. and But, P. P. H. (2002) Antiviral activities of flavonoids and organic acid from Trollius chinensis Bunge. J. Ethnopharmacol. 79, 365-368.   DOI
25 Mukai, Y. and Sato, S. (2009) Polyphenol-containing azuki bean (Vigna angularis) extract attenuates blood pressure elevation and modulates nitric oxide synthase and caveolin-1 expressions in rats with hypertension. Nutr. Metab. Cardiovasc. Dis. 19, 491-497.   DOI
26 Lithgow, G. J., White, T. M., Melov, S. and Johnson, T. E. (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. U.S.A. 92, 7540-7544.   DOI
27 Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis elegans. J. Med. Chem. 55, 4169-4177.   DOI
28 Morck, C. and Pilon, M. (2006) C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev. Biol. 6, 39.   DOI
29 Ozkay, U. D. and Can, O. D. (2013) Anti-nociceptive effect of vitexin mediated by the opioid system in mice. Pharmacol. Biochem. Behav. 109, 23-30.   DOI
30 Palme, E., Bilia, A. R., De Feo, V. and Morelli, I. (1994) Flavonoid glycosides from Cotoneaster thymaefolia. Phytochemistry 35, 1381-1382.   DOI
31 Quercia, V., Turchetto, L., Pierini, N., Cuozzo, V. and Percaccio, G. (1978) Identification and determination of vitexin and isovitexin in Passiflora incarnata extracts. J. Chromatogr. A 161, 396-402.   DOI
32 Si, H. and Liu, D. J. (2014) Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J. Nutr. Biochem. 25, 581-591.   DOI
33 Surco-Laos, F., Duenas, M., Gonzalez-Manzano, S., Cabello, J., Santos-Buelga, C. and Gonzalez-Paramas, A. M. (2012) Influence of catechins and their methylated metabolites on lifespan and resistance to oxidative and thermal stress of Caenorhabditis elegans and epicatechin uptake. Food Res. Int. 46, 514-521.   DOI
34 Sinha, M., Saha, A., Basu, S., Pal, K. and Chakrabarti, S. (2010) Aging and antioxidants modulate rat brain levels of homocysteine and dehydroepiandrosterone sulphate (DHEA-S): Implications in the pathogenesis of Alzheimer's disease. Neurosci. Lett. 483, 123-126.   DOI
35 Strayer, A., Wu, Z., Christen, Y., Link, C. D. and Luo, Y. (2003) Expression of the small heat-shock protein Hsp16-2 in Caenorhabditis elegans is suppressed by Ginkgo biloba extract EGb 761. FASEB J. 17, 2305-2307.   DOI
36 Su, S. and Wink, M. (2015) Natural lignans from Arctium lappa as antiaging agents in Caenorhabditis elegans. Phytochemistry 117, 340-350.   DOI
37 Swindell, W. R. (2009) Heat shock proteins in long-lived worms and mice with insulin/insulin-like signaling mutations. Aging (Albany NY) 1, 573-577.
38 Yao, Y., Cheng, X., Wang, L., Wang, S. and Ren, G. (2011) A determination of potential alpha-glucosidase inhibitors from Azuki Beans (Vigna angularis). Int. J. Mol. Sci. 12, 6445-6451.   DOI
39 Yumiko, H., Tomomi, M., Motonori, F., Kazuo, T. and Yoshiteru, I. (2009) Constituents and anti-oxidative activity of a hot-water extract of Adzuki (Vigna angularis) beans. J. Jpn. Soc. Nutr. Food Sci. 62, 3-11.   DOI