• Title/Summary/Keyword: Titanium dioxide ($TiO_2$

Search Result 377, Processing Time 0.031 seconds

Acoustic Emission Characteristics of Plasma Sprayed Ceramic Coating Layer after Salt Spray (플라즈마용사 세라믹코팅 피막부식재의 음향방출 특성)

  • 김귀식;박경석;홍용의
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.69-74
    • /
    • 2001
  • This paper was to investigate of a adhesiveness for the plasma sprayed coating materials did salt spray by acoustic emission method in tensile loadings. The powders used for the coating were nickel aluminum composite powder Ni-4.5wt.%Al and titanium dioxide powder $TiO_2$. These powders were coated on a carbon steel S45C by plasma spray method. The result solution was a 5% NaCl and the slat spray times were 2, 5 and 10 hours respectively. The salt solution penetrated into the surface of the substrate through pore of the coating layer built in the process of plasma spay. Corrosion productions formed on the surface of substrate. The adhesiveness between the substrate and the coating layer is weaken by corrosion and the exfoliation initiated chiefly at the corrosion surface of the substrate. The AE events and energy of the corroded coating specimens decreased as the salt spray times increased.

  • PDF

Large Scale Production of Nanoparticles by Laser Pyrolysis

  • Tenegal, Francois;Guizard, Benoit;Reau, Adrien;Ye, Chang;Boulanger, Loic;Giraud, Sophie;Canel, Jerome
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.150-151
    • /
    • 2006
  • Laser pyrolysis is a very suitable method for the synthesis of a wide range of nanoparticles. A pilot unit based on this process has been recently developed at CEA. This paper reports results showing the possibility to produce SiC and $TiO_2$ nanoparticles at rates of respectively 1 and 0.2 kg/h and also the possibility to adjust the mean grain size of the particles and their structure by changing the laser intensity and reactants flow rates. First tests of liquid recovery have been also successfully performed to limit the risks of nanoparticles dissemination in the environement during their recovery.

  • PDF

Photocatalytic Degradation of MB with One-body Photoanode (일체형 포토어노드를 활용한 메틸렌블루의 분해)

  • Shim, Eun-Jung;Bae, Sang-Hyun;Yoon, Jae-Kyung;Joo, Hyun-Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.40-45
    • /
    • 2007
  • Methylene blue(MB) was photocatalytically degraded with one-body photoanode and solar simulator to investigate the possible application to both environmental purification and photoelectrochemical cell for hydrogen production. Photoactive titanium dioxide was formed on both sides of Ti plate following steps such as rinsing-annealing-calcination or anodizing(20 V, 30 V)-annealing($350^{\circ}C$, $450^{\circ}C)$ after etching. The prepared titania plate($2cm{\times}2\;cm$, ca 1.6 mg $TiO_2$ on the basis of $1\;{\mu}m$ thickness) was used to degrade MB(10 ppm in 200 mL solution). The reaction tended to follow the Langmuir-Hinshelwood kinetics with zero order. Comparative experiments with Degussa P25 showed the same zero order kinetics when 2 mg of P25 had been used, while the first order kinetics when 200 mg used. This concludes the feasibility of the prepared titania plate as a material for the purification of low-level harmful organics and an electrode or a membrane for photoelectrochemical system for hydrogen production.

A TiO2-Coated Reflective Layer Enhances the Sensitivity of a CsI:Tl Scintillator for X-ray Imaging Sensors

  • Kim, Youngju;Kim, Byoungwook;Kwon, Youngman;Kim, Jongyul;Kim, MyungSoo;Cho, Gyuseong;Jun, Hong Young;Thap, Tharoeun;Lee, Jinseok;Yoon, Kwon-Ha
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.256-260
    • /
    • 2014
  • Columnar-structured cesium iodide (CsI) scintillators doped with thallium (Tl) are frequently used as x-ray converters in medical and industrial imaging. In this study we investigated the imaging characteristics of CsI:Tl films with various reflective layers-aluminum (Al), chromium (Cr), and titanium dioxide ($TiO_2$) powder-coated on glass substrates. We used two effusion-cell sources in a thermal evaporator system to fabricate CsI:Tl films on substrates. The scintillators were observed via scanning electron microscopy (SEM), and scintillation characteristics were evaluated on the basis of the emission spectrum, light output, light response to x-ray dose, modulation transfer function (MTF), and x-ray images. Compared to control films without a reflective layer, CsI:Tl films with reflective layers showed better sensitivity and light collection efficiency, and the film with a $TiO_2$ reflective layer showed the best properties.

Photocatalytic Membrane for Contaminants Degradation: A Review (오염물질 분해를 위한 광촉매 분리막: 총설)

  • Kahkahni, Rabea;Patel, Rajkumar;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • Growing industrialization leads to severe water pollution. Organic effluents from pharmaceuticals and textile industries released in wastewater adversely affect the environment and human health. Presence of antibiotics used for antibacterial treatment in wastewater leads to the growth of drug resistance bacteria, which is very harmful for human being. Various small organic molecules are used for the preparation of organic dye molecules in the textile industries. These molecules hardly degrade, which is present in the wastewater effluents from printing and dyeing industries. In order to address these problems, photoactive catalyst is embedded in the membrane and wastewater are passed through it. Through this process, organic molecules are photodegraded and at the same time, the degraded compounds are separated by the membrane. Titanium dioxide (TiO2) is a semiconductor which behave as excellent photocatalyst. Photocatalytic ability is enhanced by the making its composite with other transition metal oxide and incorporated into polymeric membrane. In this review, the degradation of dye and drug molecules by photocatalytic membrane are discussed.

Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads: Effect of Organic Matters, Adsorption and Photo-oxidation at Water Back-flushing (관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성 수처리: 물 역세척 시 유기물 및 흡착, 광산화의 영향)

  • Park, Sung Woo;Park, Jin Yong
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.159-169
    • /
    • 2013
  • The effect of humic acid (HA), and the roles of microfiltration (MF), PES (polyethersulfone) beads adsorption, and photo-oxidation were investigated in hybrid process of ceramic MF and PES beads loaded with titanium dioxide ($TiO_2$) photocatalyst for advanced drinking water treatment. The results of water and nitrogen back-flushing were compared in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). Because membrane fouling increased dramatically as increasing HA, Rf increased and J decreased, and finally $V_T$ was the highest at 2 mg/L HA. Average turbidity treatment efficiencies were almost same independent of HA concentration. Average organic matter treatment efficiency was the minimum 71.4% at 10 mg/L HA in water back-flushing, but those were almost constant in nitrogen back-flushing. The hybrid process of MF, PES beads, and UV (MF + $TiO_2$ + UV) have the lowest $R_f$, and the highest J and $V_T$ in both water and nitrogen back-flushing. The turbidity and organic matter treatment efficiencies were the maximum at MF + $TiO_2$ + UV independent of water and nitrogen back-flushing, and decreased sequently as simplifying the process to MF. However, adsorption performed the more important role than photo-oxidation in water back-flushing, and photo- oxidation was the more than adsorption in nitrogen back-flushing.

Skin safety of the UV Absorbers by Measurement Cytotoxicity High Functional Product with Water-in-Silicone System

  • In-Young Kim;Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.23 no.3
    • /
    • pp.134-146
    • /
    • 1997
  • Consumers have recently preferred to purchase extensive UV intercepting products, which are waterproof and free from side effects on skin. Testing Cytoroxicity in SR method, cell survivial ratio of UV-B interceptors decreased above 0.08W/V%, and so did that of UV-A interceptors above 0.06W/V%. Also, Patch-test of inorganic UV interceptors resulted in no skin irritation even below 10.0 and 11.25. UV interceptors in the sunlight showed yellowish discoloration in 5 to 14 days. In absorption curves, UV-B was most suitable for Octyl methoxycinnamate and UV-A for Butyl methoxy dibenzoylmethane. Fro this reason, Nylonpoly UVA/UVB the material of OMC and BMDM coated with Nylon & polyethylene, was used as the organic UV interceptor. And zinc oxide and titanium dioxide was used as inorganic UV ibterceptors. The appropriate mixture ratio of ZnO and TiO2 was 6 to 4.6% of ZnO, 4% of TiO2 and 5% of Nylonpoly UVA/UVB were all combined with our sunscreen cream. The SPF value of in-vivo applied to a guinea pig was 34.9 and that of in-vivo was 38.5. Cyclomerhicone and dimerthicone were used in water-in-Silicone system. Ceryl diverhicone and sorbitan sesquioleate were used as emulsifiers and MgSO4, 7H2O, Mg-stearate/Mg-Al-stearate copolymer as emulsification stabilizers. In practical application, each SPF duration of O/W type and W/S type containing sunscreen cream of the same content showed that W/S type of sunscreen cream was 5 times as durable as the other. This product is fit for using in swimming, climbing or skiing. This research is to minimize skin trouble used by UV interceptors and to make one with proper softness, skin safety and UV intercepting efficiency.

  • PDF

The Effects of Composition, Solvent Selectivity, and Additive on the Morphology of Hybrid Nano Thin Films Composed of Self-Assembled Block Copolymer and Titanium Dioxide (자기조립 블록공중합체와 이산화티타늄으로 구성된 하이브리드 나노 박막의 모폴로지에 미치는 고분자의 조성, 용매의 선택성 및 첨가제의 영향)

  • Jang, Yoon-Hee;Cha, Min-Ah;Kim, Dong-Ha
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.465-469
    • /
    • 2008
  • Hybrid thin films composed of block copolymer(BCP) and $TiO_2$ with various morphologies on the nanoscale were fabricated using self-assembly of block copolymer combined with sol-gel process. The factors governing morphology changes considered in this study are block copolymer composition, selectivity of solvent and the inclusion of an additive. We also investigated the efficiency of photoluminescence for selected films with different morphologies. Micelle or nanowire structure can be derived from the self-assembly of poly (styrene-block-4-vinyl pyridine) (PS-b-P4VP) depending on the relative selectivity of the solvent for the two blocks, and the titanium tetraisopropoxide ($Ti{OCH (CH_3)_2}_4$, TTIP) is coordinated with nitrogen in P4VP block. Addition of a third component 3-pentadecylphenol into the BCP/sol-gel mixture solution induces morphology change as a result of the change of relative volume fraction of the BCP. We confirmed that the efficiency of $TiO_2$ fluorescence changes for films depending on morphologies.

Application of Sulfur-doping Titanium Dioxide to Trichloroethylene Oxidation

  • Yang, Chang-Hui;Sin, Myeong-Hui;Jang, Jong-Dae;Lee, Jin-U;Lee, Jun-Ho;Jo, Wan-Geun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.127-130
    • /
    • 2008
  • 가시광선에서 활성을 보이는 TiO$_2$광촉매를 이용하여 대표적인 휘발성유기화합물질들 중에 하나인 TCE의 분해을에 대한 실험을 수행하였다. 본 연구에서 여러 가지 변수들 중에 농도와 상대습도에 따른 휘발성유기화합물의 분해율에 대하여 실험하였으며, 농도 및 상대습도의 변화에 따른 분해율의 영향에 대하여 확인 할 수 있었다. 향후 광촉매를 실제 실내대기에 적용하기 위해 더욱 다양한 조건에서 여러 가지 오염물질에 대한 연구들이 진행되어야 할 것이다.

  • PDF

A Nano-particle Deposition System for Ceramic and Metal Coating at Room Temperature and Low Vacuum Conditions

  • Chun, Doo-Man;Kim, Min-Hyeng;Lee, Jae-Chul;Ahn, Sung-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.51-53
    • /
    • 2008
  • A new nano-particle deposition system (NPDS) was developed for a ceramic and metal coating process. Nano- and micro-sized powders were sprayed through a supersonic nozzle at room temperature and low vacuum conditions to create ceramic and metal thin films on metal and polymer substrates without thermal damage. Ceramic titanium dioxide ($TiO_2$) powder was deposited on polyethylene terephthalate substrates and metal tin (Sn) powder was deposited on SUS substrates. Deposition images were obtained and the resulting chemical composition was measured using X-ray photoelectron spectroscopy. The test results demonstrated that the new NPDS provides a noble coating method for ceramic and metal materials.