Browse > Article

Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads: Effect of Organic Matters, Adsorption and Photo-oxidation at Water Back-flushing  

Park, Sung Woo (Department of Environmental Sciences & Biotechnology, Hallym University)
Park, Jin Yong (Department of Environmental Sciences & Biotechnology, Hallym University)
Publication Information
Membrane Journal / v.23, no.2, 2013 , pp. 159-169 More about this Journal
Abstract
The effect of humic acid (HA), and the roles of microfiltration (MF), PES (polyethersulfone) beads adsorption, and photo-oxidation were investigated in hybrid process of ceramic MF and PES beads loaded with titanium dioxide ($TiO_2$) photocatalyst for advanced drinking water treatment. The results of water and nitrogen back-flushing were compared in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). Because membrane fouling increased dramatically as increasing HA, Rf increased and J decreased, and finally $V_T$ was the highest at 2 mg/L HA. Average turbidity treatment efficiencies were almost same independent of HA concentration. Average organic matter treatment efficiency was the minimum 71.4% at 10 mg/L HA in water back-flushing, but those were almost constant in nitrogen back-flushing. The hybrid process of MF, PES beads, and UV (MF + $TiO_2$ + UV) have the lowest $R_f$, and the highest J and $V_T$ in both water and nitrogen back-flushing. The turbidity and organic matter treatment efficiencies were the maximum at MF + $TiO_2$ + UV independent of water and nitrogen back-flushing, and decreased sequently as simplifying the process to MF. However, adsorption performed the more important role than photo-oxidation in water back-flushing, and photo- oxidation was the more than adsorption in nitrogen back-flushing.
Keywords
ceramic membrane; photocatalyst; hybrid process; microfiltration; water back-flushing;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 K. Karakulski, W. A. Morawski, J. Grzechulska, K. Karakulski, W. A. Morawski, and J. Grzechulska, "Purification of bilge water by hybrid ultrafiltration and photocatalytic process", Separ. & Purification Technol., 14, 163 (1998).   DOI
2 W. Xi and S. U. Geissen, "Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration", Wat. Res., 35, 1256 (2001).   DOI
3 K. Azrague, E. Puech-Costes, P. Aimar, M. T. Maurette, and F. Benoit-Marquie, "Membrane photoreactor (MPR) for the mineralisation of organic pollutants from turbid effluents", J. Membr. Sci., 258, 71 (2005).   DOI
4 M. Pidou, S. A. Parsons, G. Raymond, P. Jeffery, T. Stephenson, and B. Jefferson, "Fouling control of a membrane coupled photocatalytic process treating greywater", Wat. Res., 43, 3932 (2009).   DOI
5 S. T. Hong and J. Y. Park, "Hybrid water treatment of tubular ceramic MF and photocatalyst loaded polyethersulfone beads: effect of organic matters, adsorption and photo-oxidation at nitrogen back-flushing", Membrane Journal, 23, 61 (2013).
6 S. C. Gao and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid rocess of ceramic ultrafiltration and photocatalyst: 1. Effect of photocatalyst and water-back-flushing condition", Membrane Journal, 21, 127 (2011).
7 A. Figoli, G. De Luca, E. Longavita, and E. Drioli, "PEEKWC capsules prepared by phase inversion technique: a morphological and dimensional study", Sep. Sci. Tech., 42, 2809 (2007).   DOI
8 J. Y. Park, S. J. Choi, and B. R. Park, "Effect of N2-back-flushing in multichannels ceramic microfiltration system for paper wastewater treatment", Desalination, 202, 207 (2007).   DOI
9 J. Y. Park and S. H. Lee, "Effect of water-backflushing in advanced water treatment system by tubular alumina ceramic ultrafiltration membrane", Membrane Journal, 19, 194 (2009).
10 H. C. Lee, "Hybrid process development of ceramic microfiltration and activated carbon adsorption for advanced water treatment of high turbidity source", Master Dissertation, Hallym Univ., Chuncheon, Korea (2008).
11 J. Y. Yun, "Removal of natural organic matter in Han River water by GAC and $O_{3}$/GAC", Master Dissertation, Univ. of Seoul, Seoul, Korea (2007).
12 M. Cheryan, "Ultrafiltration Handbook", Technomic Pub. Co., Lancater, PA (1984).
13 J. U. Kim, "A study on drinking water treatment by using ceramic membrane filtration", Master Dissertation, Yeungnam Univ., Daegu, Korea (2004).
14 H. Zhang, X. Quan, S. Chen, H. Zhao, and Y. Zhao, "Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water", Sep. Pur. Tech., 50, 147 (2006).   DOI
15 H. Yamashita, H. Nakao, M. Takeuchi, Y. Nakatani, and M. Anpo, "Coating of $TiO_{2}$ photo catalysts on super-hydrophovic porous teflon membrane by an ion assisted depositionmethod and their selfcleaning performanc", Nucl. Instr. Meth. Phys. Res., 206, 898 (2003).   DOI
16 K. W. Park, K. H. Choo, and M. H. Kim, "Use of a combined photocatalysis/microfiltration system for natural organic matter removal", Membrane Journal, 14, 149 (2004).
17 C. K. Choi, "Membrane technology", Chem. Ind. & Tech., 3, 264 (1985).
18 R. Molinari, F. Pirillo, M. Falco, V. Loddo, and L. Palmisano, "Photocatalytic degradation of dyes by using a membrane reactor", Chem. Eng. Proc., 43, 1103 (2004).   DOI
19 T. H. Bae and T. M. Tak, "Effect of $TiO_{2}$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration", J. Membr. Sci., 49, 1 (2005).
20 R. Molinari, C. Grande, and E. Drioli, "Photocatalytic membrane reactors for degradation of organic pollutants in water", Cata. Today, 67, 273 (2001).   DOI
21 R. Molinari, M. Mungari, E. Drioli, A. D. Paola, V. Loddo, L. Palmisano, and M. Schiavello, "Study on a photocatalytic membrane reactor for water purification", Catal. Today, 55, 71 (2000).   DOI
22 K. Azrague, E. Puech-costes, P. Aimar, M. T. Maurette, and F. Benoit-Marquie, "Membrane photoreactor (MPR) for the mineralisation of organic pollutants from turbid effluents", J. Membr. Sci., 258, 71 (2005).   DOI
23 S. C. Gao and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic ultrafiltration and photocatalyst: 2. Effect of photo-oxidation and adsorption", Membrane Journal, 21, 201 (2011).
24 I. R. Bellobono and B. Barni, F. Gianturco, "Preindustrial experience in advanced oxidation and integral photodegradation of organics in potable waters and waste waters by $PHOTHOPERM^{TM}$ membranes immobilizing titanium dioxide and promoting photocatalysts", J. Membr. Sci., 102, 139 (1995).   DOI
25 R. Molinari, C. Grande, E. Drioli, L. Palmisano, and M. Schiavello, "Photocatalytic membrane reactors for degradation of organic pollutants in water", Catal. Today, 67, 273 (2001).   DOI
26 R. Molinari, L. Palmisano, E. Drioli, and M. Schiavello, "Studies on various reactor configurations for coupling photocatalysis and membrane process in water purification", J. Membr. Sci., 206, 399 (2002).   DOI
27 J. Kleine, K.V. Peinemann, C. Schuster, H. J. and Warnecke, "Multifunctional system for treatment of waste-waters from adhesive-producing industries: separation of solids and oxidation of dissolved pollutants using doted microfiltation membranes", Chem. Eng. Sci., 57, 1661 (2002).   DOI