The Effects of Composition, Solvent Selectivity, and Additive on the Morphology of Hybrid Nano Thin Films Composed of Self-Assembled Block Copolymer and Titanium Dioxide

자기조립 블록공중합체와 이산화티타늄으로 구성된 하이브리드 나노 박막의 모폴로지에 미치는 고분자의 조성, 용매의 선택성 및 첨가제의 영향

  • Jang, Yoon-Hee (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Cha, Min-Ah (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Kim, Dong-Ha (Department of Chemistry and Nano Science, Ewha Womans University)
  • 장윤희 (이화여자대학교 화학나노과학과) ;
  • 차민아 (이화여자대학교 화학나노과학과) ;
  • 김동하 (이화여자대학교 화학나노과학과)
  • Published : 2008.09.30

Abstract

Hybrid thin films composed of block copolymer(BCP) and $TiO_2$ with various morphologies on the nanoscale were fabricated using self-assembly of block copolymer combined with sol-gel process. The factors governing morphology changes considered in this study are block copolymer composition, selectivity of solvent and the inclusion of an additive. We also investigated the efficiency of photoluminescence for selected films with different morphologies. Micelle or nanowire structure can be derived from the self-assembly of poly (styrene-block-4-vinyl pyridine) (PS-b-P4VP) depending on the relative selectivity of the solvent for the two blocks, and the titanium tetraisopropoxide ($Ti{OCH (CH_3)_2}_4$, TTIP) is coordinated with nitrogen in P4VP block. Addition of a third component 3-pentadecylphenol into the BCP/sol-gel mixture solution induces morphology change as a result of the change of relative volume fraction of the BCP. We confirmed that the efficiency of $TiO_2$ fluorescence changes for films depending on morphologies.

블록 공중합체의 자기조립현상과 졸-겔 공정을 결합하여 나노크기 수준에서 다양한 형태를 발현하는 블록공중합체-이산화티타늄 하이브리드 박막의 모폴로지를 제조하였다. 모폴로지 변화를 일으키는 요소로서 블록 공중합체의 조성, 용매의 선택성과 첨가제에 의한 영향을 고려하였으며, 모폴로지 변화에 따른 이산화티타늄의 발광 효율 변화 또한 확인하였다. 폴리스티렌-폴리4비닐피리딘 이중블록공중합체는 용매와 두 블록간의 상대적인 친화성에 따라 미셀과 나노선 형태로 자기조립이 가능하며, 이산화티타늄의 전구체인 티타늄 테트라아이소프로폭시드는 폴리4비닐피리딘블록의 질소 원소와 결합한다. 블록 공중합체/졸-겔 전구체 혼합 용액에 제3의 성분인 3-펜타데실페놀을 첨가하면 블록의 상대적인 부피 비율의 변화를 야기하여 모폴로지 변화를 일으킨다. 다양하게 변화하는 모폴로지에서 이산화 티타늄의 형광 효율이 변화함을 확인하였다.

Keywords

References

  1. U. Diebold, Surf. Sci. Rep., 48, 53 (2003) https://doi.org/10.1016/S0167-5729(02)00100-0
  2. A. L. Linsebigler, G. Q. Lu, and J. T. Yates, Chem. Rev., 95, 735 (1995) https://doi.org/10.1021/cr00035a013
  3. M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69 (1995) https://doi.org/10.1021/cr00033a004
  4. A. Heller, Acc. Chem. Res., 28, 503 (1995) https://doi.org/10.1021/ar00060a006
  5. M. A. Henderson, J. Phys. Chem. B, 109, 12062 (2005) https://doi.org/10.1021/jp0507546
  6. H.-D. Park, K.-Y. Ahn, M. A. Wahab, N. J. Jo, I. Kim, C.-S. Ha, G. Kim, and W.-K. Lee, Macromol. Res., 11, 172 (2003) https://doi.org/10.1007/BF03218348
  7. M. J. Gratzel, Photochem. Photobiol. A, 164, 3 (2004) https://doi.org/10.1016/j.jphotochem.2004.02.023
  8. K. M. Coakley and M. D. McGehee, Chem. Mater., 16, 4533 (2004) https://doi.org/10.1021/cm049654n
  9. O. L. Figueroa, C. H. Lee, S. A. Akbar, N. F. Szabo, J. A. Trimboli, P. K. Dutta, N. Sawaki, A. A. Soliman, and H. Verweij, Sens. Actuators B, 107, 839 (2005) https://doi.org/10.1016/j.snb.2004.12.025
  10. M. Y. Song, K.-J. Kim, and D. Y. Kim, Macromol. Res., 14, 630 (2006) https://doi.org/10.1007/BF03218735
  11. A. S. Zuzuri and N. C. MacDonald, Adv. Funct. Mater., 15, 396 (2005) https://doi.org/10.1002/adfm.200400135
  12. A. R. Armstrong, G. Armstrong, J. Canales, R. Garcia, and P. G. Bruce, Adv. Mater., 17, 862 (2005) https://doi.org/10.1002/adma.200400795
  13. G. Armstrong, A. R. Armstrong, J. Canales, and P. G. Bruce, Chem. Commun., 19, 2454 (2005)
  14. I. W. Hamley, The Physics of Block Copolymers, Oxford University Press, New York, 1998
  15. G. H. Fredrickson and F. S. Bates, Annu. Rev. Mater. Sci., 26, 501 (1996) https://doi.org/10.1146/annurev.ms.26.080196.002441
  16. M. J. Fasolka and A. M. Mayes, Annu. Rev. Mater. Res., 31, 323 (2001) https://doi.org/10.1146/annurev.matsci.31.1.323
  17. T. Hashimoto, M. Shibayma, M. Fujimura, and H. Kawai, Block Copolymers, Science and Technology, D. J. Meier, Editor, Harwood Academic, London, pp 63-108 (1983)
  18. G. Kastle, H.-G. Boyen, F. Weigl, G. Lengl, T. Herzog, P. Ziemann, S. Riethmuller, O. Mayer, C. Hartmann, J. P. Spatz, M. Moeller, M. Ozawa, F. Banhart, M. G. Garnier, and P. Oelhafen, Adv. Funct. Mat., 13, 853 (2003) https://doi.org/10.1002/adfm.200304332
  19. J. P. Spatz, S. Mosser, C. Hartmann, M. Moeller, T. Herzog, M. Krieger, H.-G. Boyen, and P. Ziemann, Langmuir, 16, 407 (2000) https://doi.org/10.1021/la990070n
  20. J. P. Spatz, A. Roescher, and M. Moller, Adv. Mater., 8, 337 (1996) https://doi.org/10.1002/adma.19960080411
  21. X. Li, K. H. A. Lau, D. H. Kim, and W. Knoll, Langmuir, 21, 5212 (2005) https://doi.org/10.1021/la046812g
  22. X. Li, P. Goring, E. Pippel, M. Steinhart, D. H. Kim, and W. Knoll, Macromol. Rapid. Commun., 26, 1173 (2005) https://doi.org/10.1002/marc.200500193
  23. D. H. Kim, X. Jia, Z. Lin, K. W. Guarini, and T. P. Russell, Adv. Mater., 16, 702 (2004) https://doi.org/10.1002/adma.200404906
  24. D. H. Kim, S. H. Kim, K. Lavery, and T. P. Russell, Nano Letters, 4, 1841 (2004) https://doi.org/10.1021/nl049063w
  25. D. H. Kim, Z. C. Sun, T. P. Russell, W. Knoll, and J. S. Gutmann, Adv. Funct. Mater., 15, 1 (2005)
  26. Z. Sun, D. H. Kim, M. Wolkenhauer, G. G. Bumbu, W. Knoll, and J. S. Gutmann, Chem. Phys. Chem., 7, 370 (2006) https://doi.org/10.1002/cphc.200500340
  27. C.-C. Weng, K.-F. Hsu, and K.-H. Wei, Chem. Mater., 16, 4080 (2004) https://doi.org/10.1021/cm049367j
  28. Y. Boontongkong and R. E. Cohen, Macromolecules, 35, 3647 (2002) https://doi.org/10.1021/ma0117357
  29. J. Peng, W. Knoll, C. M. Park, and D. H. Kim, Chem. Mater., 20, 1200 (2008) https://doi.org/10.1021/cm7026042
  30. A. W. Fahmi, H.-G. Braun, and M. Stamm, Adv. Mater., 15, 1201 (2003) https://doi.org/10.1002/adma.200304995
  31. L. Song, Y. M. Lam, C. Boothroyd, and P. W. Teo, Nanotechnoloy, 18, 135605 (2007) https://doi.org/10.1088/0957-4484/18/13/135605
  32. Z. Sun, D. H. Kim, M. Wolkenhauer, G. G. Bumbu, W. Knoll, and J. S. Gutmann, Chem. Phys. Chem., 7, 370 (2006) https://doi.org/10.1002/cphc.200500340
  33. X. Li, J. Fu, M. Steinhart, D. H. Kim, and W. Knoll, Bull. Kor. Chem. Soc., 28, 1015 (2007) https://doi.org/10.5012/bkcs.2007.28.6.1015
  34. Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, W. Chen, and S. X. Wang, Appl. Phys. Lett., 78, 1125 (2001) https://doi.org/10.1063/1.1350959