• Title/Summary/Keyword: Titanium Silicide

Search Result 44, Processing Time 0.028 seconds

Estimation of Temperature Distribution on Wafer Surface in Rapid Thermal Processing Systems (고속 열처리공정 시스템에서의 웨이퍼 상의 온도분포 추정)

  • Yi, Seok-Joo;Sim, Young-Tae;Koh, Taek-Beom;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.481-488
    • /
    • 1999
  • A thermal model based on the chamber geometry of the industry-standard AST SHS200MA rapid thermal processing system has been developed for the study of thermal uniformity and process repeatability thermal model combines radiation energy transfer directly from the tungsten-halogen lamps and the steady-state thermal conducting equations. Because of the difficulties of solving partial differential equation, calculation of wafer temperature was performed by using finite-difference approximation. The proposed thermal model was verified via titanium silicidation experiments. As a result, we can conclude that the thermal model show good estimation of wafer surface temperature distribution.

  • PDF

A study on silicidation and properties of titanium film on polysilicon by rapid thermal annealing (다결정 실리콘 위에서의 titanium silicide 형성과 그 특성)

  • 김영수;한원열;박영걸
    • Electrical & Electronic Materials
    • /
    • v.4 no.4
    • /
    • pp.304-311
    • /
    • 1991
  • 본 연구에서는 p형(100) 실리콘 기판 위에 LPCVD법으로 산화막과 다결정 실리콘을 증착하고 그 위에 Magnetron Sputtering법으로 티타늄을 500.angs.을 증착한 후, 열처리 온도 500-900.deg.C 사이에서 열처리 시간을 변화시키면서 N$_{2}$ 분위기 속에서 급속 열처리하여 티타늄 실리사이드를 형성하고 그 특성을 조사하였다. 500-600.deg.C 온도 범위에서 10초간 열처리한 시료에서는 실리사이드상은 나타나지 않고, 산소등의 불순물이 티타늄 박막 내로 확산되어 600.deg.C에서 면 저항이 최대값을 보였으며 열처리 온도는 675-750.deg.C로 높이자 TiSi상이 나타나면서 면저항이 감소되고 결정립의 크기가 크게 증가하였다. 또한 열처리온도 800.deg.C에서 나타나기 시작한 TiSi$_{2}$상은 열처리 온도 850.deg.C까지 TiSi상과 공존하면서 면저항과 reflectance는 계속 감소했다. 900.deg.C에서 10초간 열처리한 시료에서는 orthorhombic구조의 완전한 실리사이드 상만 나타났다. 최종적인 티타늄 실리사이드 박막의 두께는 1200.angs.이며 비저항은 18.mu..OMEGA.cm였다.

  • PDF

Synthesis of Titanium Silicides by Mechanical Alloying (기계적합금화에 의한 Ti Silicide 화합물의 합성)

  • 변창섭;이상호;김동관;이진형
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.250-257
    • /
    • 1998
  • The synthesis of titanium silicides ($Ti_3Si$, $TiSi_2$, $Ti_5Si_4$, $Ti_5Si_3$ and TiSi) by mechanical alloying has been investigated. Rapid, self-propagating high-temperature synthesis (SHS) reactions were observed to produce the last three phases during room-temperature high-energy ball milling of elemental powders. Such reactions appeared to be ignited by mechanical impact in an intimate, fine powder mixture formed after a critical milling period. During the high-energy ball milling, the repeated impact at contact points leads to a local concentration of energy which may ignite a self-propagating reaction. From in-situ thermal analysis, each critical milling period for the formation of $Ti_5Si_4$, $Ti_5Si_3$ and TiSi was observed to be 22, 35.5 and 53.5 min, respectively. $Ti_3Si$ and $TiSi_2$, however, have not been produced even till the milling period of 360 min due to lack of the homogeneity of the powder mixtures. The formation of titanium silicides by mechanical alloying and the relevant reaction rates appeared to depend upon the critical milling period, the homogeneity of the powder mixtures, and the heat of formation of the products involved.

  • PDF

Dielectric Brekdown Chatacteristecs of the Gate Oxide for Ti-Polycide Gate (Ti-Ploycide 게이트에서 게이트산화막의 전연파괴특성)

  • Go, Jong-U;Go, Jong-U;Go, Jong-U;Go, Jong-U;Park, Jin-Seong;Go, Jong-U
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.638-644
    • /
    • 1993
  • The degradation of dielectric breakdown field of 8nm-thick gate oxide ($SiO_2$) for Tipolycide MOS(meta1-oxide-semiconductor) capacitor with different annealing conditions and thickness of the polysilicon film on gate oxide was investigated. The degree of degradation in dielectric breakdown strength of the gate oxide for Ti-polycide gate became more severe with increasing annealing temperature and time, especially, for the case that thickness of the polysilicon film remained on the gate oxide after silicidation was reduced. The gate oxide degradation may be occurred by annealing although there is no direct contact of Ti-silicide with gate oxide. From SIMS analysis, it was confirmed that the degration of gate oxide during annealing was due to the diffusion of titanium atoms into the gate oxide film through polysilicon from the titanium silicide film.

  • PDF

Phase Transition and Formatio of $TiSi_2$ Codeposited on Atomicaily Clean Si(111) (초청정 Si기판에 동시 증착된 $TiSi_2$ 의 상전이 및 형성)

  • Gang, Eung-Yeol;Jo, Yun-Seong;Park, Jong-Wan;Jeon, Hyeong-Tak;Nemaniah, R.J.
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.107-112
    • /
    • 1994
  • The phase transition and the surface and interface morphologies of $TiSi_2$ formed on atomically clean Si substrates are investigated. 200$\AA$ Ti and 400$\AA$ Si films on Si(ll1) have been codeposited at elevated temperatures (400~$800^{\circ}C$) in ultrahigh vacuum. The phase transition of TiSiL is characterized with using XRD. The results distinguish the formation of the C49 and C54 crystalline titanium silicides. The surface and interface morphologies of titanium silicides have been examined with SEM and TEM. A relatively smootb surface is observed for the C49 phase while a rough surface and interface are observed for C54 phase. The islanding of the C54 phase becomes severe at high temperature ($800^{\circ}C$). Islands of TiSiL have been observed at temperatures above $700^{\circ}C$ but no islands are observed at temperatures below $600^{\circ}C$. For films deposited at $400^{\circ}C$ and 500%. weak XRD peaks corresponding to TiSi were observed and TEM micrographs exhibited small crystalline regions of titanium silicide at the interface.

  • PDF

Joining of Silicon Nitride to Carbon Steel using an Active Metal Alloys (활성 납재를 이용한 질화규소/탄소강 접합)

  • Choe, Yeong-Min;Jeong, Byeong-Hun;Lee, Jae-Do
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.199-204
    • /
    • 1999
  • As the engine design change to get high efficiency and performance of commercial diesel engine, surface wear of the cam follower becomes an important issues as applied load increasing at the contact face between cam follower and cam. Purpose of this study is the developing of the ceramic cam follower made of silicon nitride ceramic which is more wear resistant than the cast iron and sintered cam follower. Ceramic cam follower was made by direct brazing of thin ceramic disk to steel can follower body using active bracing alloy. Effect of joining condition on the interfacial phases and joining strength wer examined at bvarious joining temperatures, times, and cooling rates. Crowning resulted from the difference of thermal expansion coefficient after direct brazing without using any stress-relieving inter layer was measured. Interfacial phases are mainly titanium silicide and titanium nitride which are the products between active metal(Ti) in brazing alloy and silicon nitiride. Maximum joining strength of the ceramic metal joint, measured by DBS method, was 334MPa. Crowning(R) of the prototype ceramic cam follower was 1595mm. As machining for crowning is not necessary, production cost can be reduced.

  • PDF

Characterization of Ni SALICIDE process with Co interlayer and TiN capping layer for 0.1um CMOS device (Co-interlayer와 TiN capping을 적용한 니켈실리사이드의 0.1um CMOS 소자 특성 연구)

  • 오순영;지희환;배미숙;윤장근;김용구;황빈봉;박영호;이희덕;왕진석
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.671-674
    • /
    • 2003
  • 본 논문에서는 Cobalt interlayer 와 Titanium Nitride(TiN) capping layer를 Ni SALICIDE의 단점인 열 안정성과 sheet resistance 와 series 저항을 감소시키는데 적용하여 0.lum 급 CMOS 소자의 특성을 연구하였다. 첫째로, Ni/Si 의 interface 에 Co interlayer 를 증착하여 Nickel Silicide의 단점인 열 안정성 평가인 700℃, 30min의 furnace annealing 후에 낮은 sheet resistance와 누설전류를 줄일 수 있었다. 두번째로, TiN caping layer를 적용하여 실리사이드 형성시 산소와의 반응을 막아 실리사이드의 표면특성을 향상시켜 누설전류의 특성을 개선하였다. 결과적으로 소자의 구동전류 향상, 누설전류 저하, 낮은 면저항으로 소자의 특성을 개선하였다.

  • PDF

Analysis on Proecwss Characteristics of 2'nd Silicidation Formation Process at MOS Structure (MOS 구조에서 실리사이드 형성단계의 공정특성 분석)

  • Eom, Gum-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.130-131
    • /
    • 2005
  • In the era of submicron devices, super ultra thin gate oxide characteristics are required. Titanium silicide process has studied gate oxide reliability and dielectric strength characteristics as the composition of gate electrode. In this study the author observed process characteristics on MOS structure. In view point of the process characteristics of MOS capacitor, the oxygen & Ti, Si2 was analyzed by SIMS analysis on before and after annealing with 1,2 step silicidation, the Ti contents[Count/sec]of $9.5{\times}1018$ & $6.5{\times}1018$ on before and after 2'nd anneal. The oxygen contents[Count/sec] of $4.3{\times}104$ & $3.65{\times}104$, the Si contents[Count/sec] of $4.2{\times}104$ & $3.7{\times}104$ on before and after 2'nd anneal. The rms value[A] was 4.98, & 4.03 on before and after 2'nd anneal.

  • PDF

Effects of Dopants Introduced into the Poly-Si on the Formation of Ti-Silicides (Poly-Si에 첨가한 도펀트가 Titanium Silicides 형성에 미치는 영향 Ⅱ)

  • Ryu, Yeon-Soo;Choi, Jin-Seog;Paek, Su-Hyon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.73-80
    • /
    • 1990
  • The formation of Ti-silicides with the type of substrate, the species and the concentration of dopant, and the annealing temperature was investigated with sheet resistance and thickness measurement, elemental depth profilling, and microstructure. It was directly affected by the type of substrate, the species and the concentration of dopant, and the annealing temperature. For the amorphous Si substrate, the smothness of $TiSi_2/Si$ interface was increased. Above concentr-ation of $1{\times}10^{16}ions/cm^2$, the rate of $TiSi_2/Si$ formation was decreased and the sheet resistance was increased. The initial profile of dopant according to the implantation energy was one of the factors influencing the out-diffusion of dopant. In $POCI_3$ process, this was less than in ion implantation process.

  • PDF