Abstract
The synthesis of titanium silicides ($Ti_3Si$, $TiSi_2$, $Ti_5Si_4$, $Ti_5Si_3$ and TiSi) by mechanical alloying has been investigated. Rapid, self-propagating high-temperature synthesis (SHS) reactions were observed to produce the last three phases during room-temperature high-energy ball milling of elemental powders. Such reactions appeared to be ignited by mechanical impact in an intimate, fine powder mixture formed after a critical milling period. During the high-energy ball milling, the repeated impact at contact points leads to a local concentration of energy which may ignite a self-propagating reaction. From in-situ thermal analysis, each critical milling period for the formation of $Ti_5Si_4$, $Ti_5Si_3$ and TiSi was observed to be 22, 35.5 and 53.5 min, respectively. $Ti_3Si$ and $TiSi_2$, however, have not been produced even till the milling period of 360 min due to lack of the homogeneity of the powder mixtures. The formation of titanium silicides by mechanical alloying and the relevant reaction rates appeared to depend upon the critical milling period, the homogeneity of the powder mixtures, and the heat of formation of the products involved.