• 제목/요약/키워드: Titanium Nitride

검색결과 134건 처리시간 0.023초

고체 슈퍼캐퍼시터를 위한 폴리비닐알콜 고분자 전해질막 (Poly(vinyl alcohol)-based Polymer Electrolyte Membrane for Solid-state Supercapacitor)

  • 이재훈;박철훈;박민수;김종학
    • 멤브레인
    • /
    • 제29권1호
    • /
    • pp.30-36
    • /
    • 2019
  • 본 연구에서는 titanium nitride (TiN) 나노 섬유와 poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) 전도성 고분자로 이루어진 전극과 poly(vinyl alcohol) (PVA) 기반 고분자 전해질 분리막을 이용하여 슈퍼 캐퍼시터를 제조하였다. TiN 나노 섬유의 경우 높은 전기 전도도와 이차원적 구조로 인한 스케폴드 효과를 기대할 수 있다는 점에서 전극 물질로 사용되었다. PEDOT-PSS 전도성 고분자는 수소 이온과 산화-환원 반응을 통해 보다 높은 정전용량을 나타낼 수 있으며 용액상에 분산이 용이해 유무기 복합제를 형성하기에 적합하였다. PVA 기반의 고분자 전해질 분리막은 기존의 액상의 전해질의 문제인 외부 충격에 대한 안정성을 확보할 수 있으며 염으로 사용된 $H_3PO_4$의 경우 수소 이온은 빠른 확산으로 인해 캐퍼시터의 충방전 효율에 이점이 있다. 본 연구에서 보고된 PEDOT-PSS/TiN 슈퍼캐퍼시터의 정전용량은 약 75 F/g으로 기존의 탄소기반 캐퍼시터에 비해 큰 폭으로 증가한 값이다.

Effects of metal dopant content on mechanical properties of Ti-Cu-N films

  • Hyun S. Myung;Lee, Hyuk M.;Kim, Sang S.;Jeon G. Han
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2001년도 추계학술발표회 초록집
    • /
    • pp.37-37
    • /
    • 2001
  • TiN coatings were applied for VarIOUS application fields, because of a good wear-resistance and a high hardness. Typically, TiN thin films show the hardness of 25GPa and friction coefficient of 0.6. However, in many field, one is looking for a more improved tool which has low friction coefficient and high wear resistance. The main motivation of this study is to characterize the influence of copper dopant content on TiN thin films. Ti-Cu-N thin films were deposited onto D2 steel substrates by PVD processing with various magnetron current densities (Cu contents). In this work, we synthesized titanium nitride films similar with reported typical titanium nitride films and synthesized Ti-Cu-N thin films with the addition of elemental copper which is measured improved hardness more than pure TiN films with copper content variables. This films has preferred oriented films of (111) direction. In addition, It was found that there is a strong correlation between content of various metal and film characteristics such as preferred orientation, grain size, hardness and friction coefficient and so, in future study, improved mechanical properties of TiN films can be controlled by change in target current density. The Ti-Cu-N film will show apparent hardness improvement and mechanical properties enhancement, when doping element is added onto TiN thin films. Film structure, chemical composition, mechanical properties were investigated by means of X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy(EDS), wear resistance tester and nanohardness tester.

  • PDF

이온 질화층이 TiN 박막의 밀착성에 미치는 영향 (The Adhesion of TiN Coatings on Plasma-nitrided Steel)

  • 고광만;김홍우;김문일
    • 열처리공학회지
    • /
    • 제4권4호
    • /
    • pp.1-14
    • /
    • 1991
  • In PECVD(Plasma-Enhanced Chemical Vapor Deposition) process, titanium nitride is thin and its adhesion is poor for the protective coatings. Therefore it has been studied that intermediate layer forms between substrate and TiN thin film. Using R.F. plasma nitriding, nitride layer was first formed, then TiN thin film coated by PECVD. The chemical composition of the coatings has been characterized using AES, EDS and their crystallographic structure by means of XRD. Mechanical properties such as microhardness and film adhesion have also been determined by vickers hardness test, scratch test and indentation test. As a result, there was no difference in chemical composition and structure between the TiN deposition only and the composite of TiN deposition on nitrided steel. It was found that nitrided substrate increased the hardness of TiN coatings and was beneficial in preventing the plastic deformation in the substrate. Therefore the effective load bearing capacity of the TiN coatings on nitrided steel was increased and their adhesion was improved as well. According to the results of this study, the processes that lead to the formation of composite layers characterized by good working properties, i.e., high microhardness, adhesion and resistance to deformation.

  • PDF

Pyrolytic Conversion of Blended Precursors into Ti-Al-N Ceramic Composites

  • Cheng, Fei;Sugahara, Yoshiyuki;Kuoda, Kazuyuki
    • The Korean Journal of Ceramics
    • /
    • 제6권1호
    • /
    • pp.32-36
    • /
    • 2000
  • Pyrolytic preparations of Ti-Al-N ceramics from three blended precursors were investigated. The precursors were prepared stirring ($HA1N^{i}Pr_m$ and an aminolysis product of $Ti(NMe_2)_4$ with $MeHNCH_2CH_2$NHMe in $C_6/H_6$ . IR and $^1H\;NMR $analyses suggested that essentially no Ti-N-Al bonds were present in the precursors. Pyrolysis of the precursors under $NH_3-N_2$led to the formation of brown solids with ceramic yields of about 30%, and the Ti-Al ratios in the pyrolyzed products were close to those of the precursors. XRD analysis of the pyrolyzed product from the precursor with Ti:Al=5:1 indicated the formation of a NaCl-type compound as the only crystalline phase. Pyrolysis of the precursor with Ti:Al=2:1 led to the formation of AlN besides the major NaCl-type compound. A ceramic composite containing AlN and the NaCl-type compound was formed by pyrolysis of the precursor with Ti:Al=1:2.

  • PDF

밀폐용기 내 입자 혼합물(ZPP와 THPP)의 연소에 대한 수치해석적 모델링 및 해석 (Numerical Modeling on the Dual Propellant Combustion in a Closed Vessel)

  • 한두희;성홍계;권미라;안길환;김준형;류병태
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.451-455
    • /
    • 2017
  • ZPP와 THPP 화약의 압력 카트리지가 밀폐용기에 장착되어 연소될 때의 현상을 반응성 오일러리안-라그랑지안 이상 유동 해석 코드를 통해 모사 하였다. ZPP와 THPP는 압력 카트리지 내에서 boron nitride 판으로 격리되어있고, ZPP만 열선에 의해 직접 점화되기 때문에 THPP의 연소지연효과가 발생할 가능성이 높다. 실험을 통한 THPP의 점화지연 측정은 힘들기 때문에 기존의 연구를 통해 검증된 수치해석 코드를 통해 점화지연에 대한 케이스 스터디를 수행하고 현상학적 분석을 수행하였다. 해석 결과 THPP의 점화지연 정도에 따라 초기 충격파의 강도가 변하여 압력선도의 초기 피크특성 뿐만 아니라 주파수에도 영향을 미친다는 것을 알 수 있었다.

  • PDF

수소연료전지 자동차의 수소밸브용 알루미늄 합금의 수소취화에 의한 기계적 특성에 미치는 CrN과 TiN 코팅의 영향 (Effects of CrN and TiN Coating by Hydrogen Embrittlement of Aluminum Alloys for Hydrogen Valves of Hydrogen Fuel Cell Vehicles on Mechanical Properties)

  • 허호성;신동호;김성종
    • Corrosion Science and Technology
    • /
    • 제22권4호
    • /
    • pp.232-241
    • /
    • 2023
  • The mechanical properties of the hydrogen valve responsible for supplying and blocking hydrogen gas in a hydrogen fuel cell electric vehicle (FCEV) were researched. Mechanical properties by hydrogen embrittlement were investigated by coating chromium nitride (CrN) and titanium nitride (TiN) on aluminum alloy by arc ion plating method. The coating layer was deposited to a thickness of about 2 ㎛, and a slow strain rate test (SSRT) was conducted after hydrogen embrittlement to determine the hydrogen embrittlement resistance of the CrN and TiN coating layers. The CrN-coated specimen presented little decrease in mechanical properties until 12 hours of hydrogen charging due to its excellent resistance to hydrogen permeation. However, both the CrN and TiN-coated specimens exhibited deterioration in mechanical properties due to the peeling of the coating layer after 24 hours of hydrogen charging. The specimens coated at 350 ℃ presented a significant decrease in ultimate tensile strength due to abnormal grain growth.

마그네슘의 금속염화물 환원에 의한 초미립 TiCN 분말합성 (Preparation of Ultrafine TiCN Powders by Mg-reduction of Metallic Chlorides)

  • 이동원;김진천;김용진;김병기
    • 한국분말재료학회지
    • /
    • 제16권2호
    • /
    • pp.98-103
    • /
    • 2009
  • The ultrafine titanium carbonitride particles ($TiC_{0.7}N_{0.3}$) below 100nm in mean size were successfully synthesized by Mg-thermal reduction process. The nanostructured sub-stoichiometric titanium carbide ($TiC_{0.7}$) particles were produced by the magnesium reduction at 1123K of gaseous $TiC_{l4}+xC_2Cl_4$ and the heat treatments in vacuum were performed for five hours to remove residual magnesium and magnesium chloride mixed with $TiC_{0.7}$. And final $TiC_{0.7}N_{0.3}$ phase was obtained by nitrification under normal $N_2$ gas at 1373K for 2 hrs. The purity of produced $TiC_{0.7}N_{0.3}$ particles was above 99.3% and the oxygen contents below 0.2 wt%. We investigated in particular the effects of the temperatures in vacuum treatment on the particle refinement of final product.

Characteristics of MINOS Structure using $TiO_2$ as Blocking Layer for Nonvolatile Memory applicable to OLED

  • Lee, Kwang-Soo;Jung, Sung-Wook;Kim, Kyung-Hae;Jang, Kyung-Soo;Hwang, Sung-Hyun;Lee, Jeoung-In;Park, Hyung-Jun;Kim, Jae-Hong;Son, Hyuk-Joo;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1284-1287
    • /
    • 2007
  • Titanium dioxide ($TiO_2$) is promising candidate for fabricating blocking layer of gate dielectrics in non-volatile memory (NVM). In this work, we investigated $TiO_2$ as high dielectric constant material instead of silicon dioxide ($SiO_2$), which is generally used as blocking layer for NVM.

  • PDF

물리적 증착 방법에 의한 TiC, TiN코팅에 따른 자동차 구조용 재료의 트라이볼로지 특성 (Tribological Characteristics of TiC, TiN Coating for PVD Method with Automotive structural Materials)

  • 오성모
    • 한국산학기술학회논문지
    • /
    • 제8권3호
    • /
    • pp.432-436
    • /
    • 2007
  • 자동차 구조용 재료에 대하여 물리적 증착 코팅방법에 의한 트라이볼로지 특성을 연구 하였다. 코팅 재료는 탄화티탄(TiC)과 질화티탄(TiN)이다. 실험은 펠렉스 마찰 마모시험기를 이용하여 하중과 온도에 다양한 조건을 적용하여 마찰과 마모 거동에 대하여 트라이볼로지 특성을 결정하고 평가하였다. 연구결과 코팅하지 않았을 때보다 코팅하였을 때가 윤활 특성이 향상 되었고, 특히 내마모성 및 극압성 그리고 열 안정성이 훌륭하였다.

  • PDF

Correlation of Sintering Parameters with Density and Hardness of Nano-sized Titanium Nitride reinforced Titanium Alloys using Neural Networks

  • Maurya, A.K.;Narayana, P.L;Kim, Hong In;Reddy, N.S.
    • 한국분말재료학회지
    • /
    • 제27권5호
    • /
    • pp.365-372
    • /
    • 2020
  • Predicting the quality of materials after they are subjected to plasma sintering is a challenging task because of the non-linear relationships between the process variables and mechanical properties. Furthermore, the variables governing the sintering process affect the microstructure and the mechanical properties of the final product. Therefore, an artificial neural network modeling was carried out to correlate the parameters of the spark plasma sintering process with the densification and hardness values of Ti-6Al-4V alloys dispersed with nano-sized TiN particles. The relative density (%), effective density (g/㎤), and hardness (HV) were estimated as functions of sintering temperature (℃), time (min), and composition (change in % TiN). A total of 20 datasets were collected from the open literature to develop the model. The high-level accuracy in model predictions (>80%) discloses the complex relationships among the sintering process variables, product quality, and mechanical performance. Further, the effect of sintering temperature, time, and TiN percentage on the density and hardness values were quantitatively estimated with the help of the developed model.