Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.5.365

Correlation of Sintering Parameters with Density and Hardness of Nano-sized Titanium Nitride reinforced Titanium Alloys using Neural Networks  

Maurya, A.K. (School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University)
Narayana, P.L (School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University)
Kim, Hong In (School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University)
Reddy, N.S. (School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University)
Publication Information
Journal of Powder Materials / v.27, no.5, 2020 , pp. 365-372 More about this Journal
Abstract
Predicting the quality of materials after they are subjected to plasma sintering is a challenging task because of the non-linear relationships between the process variables and mechanical properties. Furthermore, the variables governing the sintering process affect the microstructure and the mechanical properties of the final product. Therefore, an artificial neural network modeling was carried out to correlate the parameters of the spark plasma sintering process with the densification and hardness values of Ti-6Al-4V alloys dispersed with nano-sized TiN particles. The relative density (%), effective density (g/㎤), and hardness (HV) were estimated as functions of sintering temperature (℃), time (min), and composition (change in % TiN). A total of 20 datasets were collected from the open literature to develop the model. The high-level accuracy in model predictions (>80%) discloses the complex relationships among the sintering process variables, product quality, and mechanical performance. Further, the effect of sintering temperature, time, and TiN percentage on the density and hardness values were quantitatively estimated with the help of the developed model.
Keywords
Artificial Neural Network; Spark plasma sintering; Ti-6Al-4V alloy; TiN nanomaterials; Weight distribution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. M. Tsai: Int. J. Refract. Met. Hard Mater., 29 (2011) 188.   DOI
2 T. Abdessalem, F. Schoenstein, F. Tetard and M. Abdellaoui: Int. J. Refract. Met. Hard Mater., 30 (2012) 64.   DOI
3 L. Wang, J. Zhang and W. Jiang: Int. J. Refract. Met. Hard Mater., 39 (2013) 103.   DOI
4 L. Wang, W. Jiang, L. Chen, M. Yang and H. Zhu: J. Am. Cream. Soc., 89 (2006) 2364.
5 Y. I. Lee, J. H. Lee, S. H. Hong and D. Y. Kim: Mater. Res. Bull., 38 (2003) 925.   DOI
6 W. Liu and M. Naka: Scr. Mater., 48 (2003) 1225.   DOI
7 L. Gao, H. Z. Wang, J. S. Hong, H. Miyamoto, K. Miyamoto, Y. Nishikawa and S. D. D. L. Torre: J. Eur. Ceram. Soc., 19 (1999) 609.   DOI
8 Z. A. Munir, U. Anselmi-Tamburini and M. Ohyanagi: J. Mater. Sci., 41 (2006) 763.   DOI
9 O. Guillon, J. G. Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel and M. Herrmann: Adv. Eng. Mater., 16 (2014) 830.   DOI
10 O. E. Falodun, B. A. Obadele, S. R. Oke, M. E. Maja and P. A. Olubambi: J. Alloys Compd., 736 (2018) 202.   DOI
11 G. Xie, Q. Wang, M. Zeng and L. Luo: Appl. Therm. Eng., 27 (2007) 1096.   DOI
12 S. C. Lee: Eng. Struct., 25 (2003) 849.   DOI
13 N. S. Reddy, Y. H. Lee, C. H. Park and C. S. Lee: Mater. Sci. Eng. A, 492 (2008) 276.   DOI
14 A. K. Maurya, P. L. Narayana, A. G. Bhavani and J. K. Hong: J. Electrostat., 104 (2020) 103425.   DOI
15 N. S. Reddy, J. Krishnaiah, S. G. Hong and J. S. Lee: Mater. Sci. Eng. A, 508 (2009) 93.   DOI
16 N. S. Reddy, J. Krishnaiah, B. Y. Hur and J. S. Lee: Comput. Mater. Sci., 101 (2015) 120.   DOI
17 C. H. Park, D. Cha, M. Kim, N. S. Reddy and J. T. Yeom: Met. Mater. Int., 25 (2019) 768.   DOI
18 N. S. Reddy, B. B. Panigtahi, M. H. Choi, J. H. Kim and C. S. Lee: Comput. Mater. Sci., 107 (2015) 175.   DOI