• Title/Summary/Keyword: Titania nanotubes

Search Result 24, Processing Time 0.023 seconds

Noncovalent Titania Wrapping of Single-Walled Carbon Nanotubes for Environmentally Stable Transparent Conductive Thin Films (환경신뢰성이 확보된 투명전도성 필름을 위한 비공유 걸합에 의한 단일벽 탄소나노튜브의 $TiO_2$ 코팅)

  • Han, Joong-Tark;Kim, Jun-Suk;Jeong, Hae-Deuk;Jeong, Hee-Jin;Jeong, Seung-Yol;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.20-20
    • /
    • 2010
  • We present a simple process for the fabrication of high performance transparent conducting films that contain single-walled carbon nanotubes (SWCNTs) noncovalently coated with an ultrathin titania layer. The hydrophobic interactions between nanotube surfaces and the acetylacetone (acac) ligands used to stabilize the $TiO_2$ precursor provide an interesting alternative method for noncovalently coating the SWCNTs with a titania layer. The ultrathin titania layer on SWCNTs prevented the oxidation of functionalized SWCNTs at high temperatures, and protected against water molecule absorption.

  • PDF

Noncovalent Titania Wrapping of Single-Walled Carbon Nanotubes for Environmentally Stable Transparent Conductive Thin Films (환경신뢰성이 확보된 투명전도성 필름을 위한 비공유 결합에 의한 단일벽 탄소나노튜브의 $TiO_2$ 코팅)

  • Han, Joong-Tark;Kim, Jun-Suk;Jeong, Hee-Jin;Jeong, Seung-Yol;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.279-279
    • /
    • 2010
  • We present a simple process for the fabrication of high performance transparent conducting films that contain single-walled carbon nanotubes (SWCNTs) noncovalently coated with an ultrathin titania layer. The hydrophobic interactions between nanotube surfaces and the acetylacetone (acac) ligands used to stabilize the $TiO_2$ precursor provide an interesting alternative method for noncovalently coating the SWCNTs with a titania layer. The ultrathin titania layer on SWCNTs prevented the oxidation of functionalized SWCNTs at high temperatures, and protected against water molecule absorption.

  • PDF

In vivo evaluation of infrared LASER mediated drug release of PLA-tetracycline complexes coated gold nanoparticle-titania nanotubes with mouse (마우스를 이용한 PLA - tetracycline 복합체 코팅 금 나노입자 - 티타니아 나노튜브의 적외선 레이저 유도 약물용출 생체 내 평가)

  • Moon, Kyung-Suk;Jeoung, Chan-Gwoun;Bae, Ji-Myung;Oh, Seunghan
    • Korean Journal of Dental Materials
    • /
    • v.44 no.1
    • /
    • pp.33-41
    • /
    • 2017
  • In this study, we prepared PLA-tetracycline complexes coated gold nanoparticle-titania nanotubes and estimated their infrared LASER mediated drug release in the abdominal region of ICR mouse. The results of UV-Vis spectrophotometer showed the highest absorbance at the wavelength of 530 nm and 809 nm indicating the existence of gold nanoparticles. EDX analysis showed that the amounts of gold nanoparticle coated on titania nanotubes were approximately 3.62-36.5 wt%. In vivo test resulted that the tetracycline release value of experimental groups (6.5 ng/mL) was higher than that of control group (5.8 ng/mL) on the condition of 30 minutes of LASER irradiation. Therefore, it is expected that PLA-tetracycline complexes coated gold nanoparticle-titania nanotubes have the feasibility in the field of infrared remote controlled drug device and overcome the limitation of location and time of drug release in dental implant.

Effects of Surface Characteristics of TiO2 Nanotublar Composite on Photocatalytic Activity (TiO2 복합 광촉매의 표면 특성과 광촉매 효율)

  • Lee, Jong-Ho;Youn, Jeong-Il;Kim, Young-Jig;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.556-564
    • /
    • 2014
  • To synthesize a high-performance photocatalyst, N doped $TiO_2$ nanotubes deposited with Ag nanoparticles were synthesized, and surface characteristics, electrochemical behaviors, and photocatalytic activity were investigated. The $TiO_2$ nanotubular photocatalyst was fabricated by anodization; the Ag nanoparticles on the $TiO_2$ nanotubes were synthesized by a reduction reaction in $AgNO_3$ solution under UV irradiation. The XPS results of the N doped $TiO_2$ nanotubes showed that the incorporated nitrogen ions were located in interstitial sites of the $TiO_2$ crystal structure. The N doped titania nanotubes exhibited a high dye degradation rate, which is effectively attributable to the increase of visible light absorption due to interstitial nitrogen ions in the crystalline $TiO_2$ structure. Moreover, the precipitated Ag particles on the titania nanotubes led to a decrease in the rate of electron-hole recombination; the photocurrent of this electrode was higher than that of the pure titania electrode. From electrochemical and dye degradation results, the photocurrent and photocatalytic efficiency were found to have been significantly affected by N doping and the deposition of Ag particles.

Titania-assisted dispersion of carboxylated single-walled carbon nanotubes in ZnO sol for transparent conducting films with high thermal stability ($TiO_2$ 도입에 따른 ZnO 졸에서의 단일벽 탄소나노튜브의 분산안정성 및 그 투명전도성 필름의 고온 안정성)

  • Kim, Bo-Gyeong;Han, Joong-Tark;Jeong, Hee-Jin;Jeong, Seung-Yol;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.277-277
    • /
    • 2010
  • We present facile chemical route stabilizing dispersion of carboxylated single-Walled carbon nanotubes (SWCNTs) in ZnOsol prepared by using diethanolamine as a stabilizer. The dispersion was stabilized via capping of carboxyl groups on the SWCNT surface by a titania layer. We also demonstrated that the conductivity of the films prepared P3/$TiO_2$/ZnO as enhanced by therml treatment, and the thermal stbility of the film improved hybridization with ZnO sol pristine P3, P3/$SiO_2$ and P3/$TiO_2$ hybrid films.

  • PDF

Titania-assisted dispersion of carboxylated single-walled carbon nanotubes in ZnO sol for transprent conducting films with high thermal stability ($TiO_2$ 도입에 따른 ZnO 졸에서의 단일벽 탄소나노튜브의 분산안정성 및 그 투명전도성 필름의 고온 안정성)

  • Kim, Bo-Gyeong;Han, Joong-Tark;Jeong, Hae-Deuk;Jeong, Hae-Deuk;Jeong, Seung-Yol;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.41-41
    • /
    • 2010
  • We present facile chemical route stabilizing dispersion of carboxylated single-walled carbon nanotubes (SWCNTs) in ZnOsol prepared by using diethanolamine as a stabilizer. The dispersion was stabilized via capping of carboxyl groups on the SWCNT surface by a titania layer. We also demonstrated that the conductivity of the films prepared P3/$TiO_2$/ZnO as enhanced by therml treatment, and thethermal stbility of the film improved hybridization with ZnO sol pristine P3, P3/$SiO_2$ and P3/$TiO_2$ hybrid films.

  • PDF

Electrochemical Determination of Dopamine Based on Carbon Nanotube-Sol-Gel Titania-Nafion Composite Film Modified Electrode

  • Park, Ji-Ae;Kim, Byung-Kun;Choi, Han-Nim;Lee, Won-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3123-3127
    • /
    • 2010
  • A highly sensitive electrochemical detection method for dopamine (DA) has been developed by relying on a multiwalled carbon nanotube (CNT)-sol-gel titania-Nafion composite film modified glassy carbon (GC) electrode. The CNT-titania-Nafion/GC electrode exhibited excellent electrocatalytic activity towards DA. Therefore, the CNT-titania-Nafion/GC electrode showed improved voltammetric and amperometric responses for DA compared to those obtained with both titania-Nafion/GC and Nafion/GC electrodes. The CNT-titania-Nafion/GC electrode gave a linear response ($R^2$ = 0.999) for DA from $0.5\;{\mu}M$ to 0.5 mM with a detection limit (S/N = 3) of $0.1\;{\mu}M$ and a good sensitivity of 150 mA/M while other electrodes such as CNT-Nafion/GC, titania-Nafion/GC, and a bare GC gave a sensitivity of 89, 39, and 36 mA/M, respectively. Besides, the CNT-titania-Nafion/GC electrode displayed very fast response time within 2 s. The modified electrode showed good selectivity against ascorbic acid. The modified electrode showed good stability and reproducibility. The CNT-titania-Nafion/GC electrode was applied to the determination of DA in urine and serum samples.

Visible Light Photoelectrocatalytic Properties of Novel Yttrium Treated Carbon Nanotube/Titania Composite Electrodes

  • Zhang, Feng-Jun;Chen, Ming-Liang;Zhang, Kan;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.133-139
    • /
    • 2010
  • Photoelectrocatalytic decolorization of methlene blue (MB) in the presence of two types of carbon nanotube/titania and yttrium-treated carbon nanotube/titania electrodes in aqueous solutions were studied under visible light. The prepared composite electrodes were characterized by X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray analysis, and photoelectrocatalytic activity. The photoelectrocatalytic performances of the supported catalysts were evaluated for the decolorization of MB solution under visible light irradiation. The results showed that yttrium incorporation enhanced the decolorization rate of MB. It was found that the photoelectrocatalytic degradation of a MB solution could be attributed to the combined effects caused by the photo-degradation of titania, the electron assistance of carbon nanotube network, the enhancement of yttrium and a function of the applied potential. The repeatability of photocatalytic activity was also tested. The presence of yttrium enhanced the hydrophillicity of yttrium-carbon nanotubes/titania electrode because more OH groups can be adsorbed on the surface.

Effects of incorporation of 2.5 and 5 wt% TiO2 nanotubes on fracture toughness, flexural strength, and microhardness of denture base poly methyl methacrylate (PMMA)

  • Naji, Sahar Abdulrazzaq;Behroozibakhsh, Marjan;Kashi, Tahereh Sadat Jafarzadeh;Eslami, Hossein;Masaeli, Reza;Mahgoli, Hosseinali;Tahriri, Mohammadreza;Lahiji, Mehrsima Ghavvami;Rakhshan, Vahid
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.2
    • /
    • pp.113-121
    • /
    • 2018
  • PURPOSE. The aim of this preliminary study was to investigate, for the first time, the effects of addition of titania nanotubes ($n-TiO_2$) to poly methyl methacrylate (PMMA) on mechanical properties of PMMA denture base. MATERIALS AND METHODS. $TiO_2$ nanotubes were prepared using alkaline hydrothermal process. Obtained nanotubes were assessed using FESEM-EDX, XRD, and FT-IR. For 3 experiments of this study (fracture toughness, three-point bending flexural strength, and Vickers microhardness), 135 specimens were prepared according to ISO 20795-1:2013 (n of each experiment=45). For each experiment, PMMA was mixed with 0% (control), 2.5 wt%, and 5 wt% nanotubes. From each $TiO_2$:PMMA ratio, 15 specimens were fabricated for each experiment. Effects of $n-TiO_2$ addition on 3 mechanical properties were assessed using Pearson, ANOVA, and Tukey tests. RESULTS. SEM images of $n-TiO_2$ exhibited the presence of elongated tubular structures. The XRD pattern of synthesized $n-TiO_2$ represented the anatase crystal phase of $TiO_2$. Moderate to very strong significant positive correlations were observed between the concentration of $n-TiO_2$ and each of the 3 physicomechanical properties of PMMA (Pearson's P value ${\leq}.001$, correlation coefficient ranging between 0.5 and 0.9). Flexural strength and hardness values of specimens modified with both 2.5 and 5 wt% $n-TiO_2$ were significantly higher than those of control ($P{\leq}.001$). Fracture toughness of samples reinforced with 5 wt% $n-TiO_2$ (but not those of 2.5% $n-TiO_2$) was higher than control (P=.002). CONCLUSION. Titania nanotubes were successfully introduced for the first time as a means of enhancing the hardness, flexural strength, and fracture toughness of denture base PMMA.

Preparation and Characterizations of Titania Nanotube Thin Films (티타니아 나노튜브(TNT) 박막의 제조 및 특성에 관한 연구)

  • Lee, Youngrok;Jung, Jihoon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.652-656
    • /
    • 2011
  • Thin film of titania nanotubes(TNT) and titania nanofilms(TNF) was fabricated by anodizing for the study of the photo-catalytic reaction(PC) and photoelectrocatalytic reaction(PEC). Removal efficiency of methylene blue was investigated by UV radiation on the TNT coated titanium plate. Removal efficiency was increased with longer TNT length. Degradation efficiency of the PEC reaction was less sensitive than that of PC reaction. And Effect of TNT length is relatively small. Titania nanofilms(TNF) showed low efficiency than TNT. The efficiency drop of PC was larger than that of PEC.