• 제목/요약/키워드: Tissue engineering

검색결과 1,839건 처리시간 0.027초

Myocardial tissue engineering using electrospun nanofiber composites

  • Kim, Pyung-Hwan;Cho, Je-Yoel
    • BMB Reports
    • /
    • 제49권1호
    • /
    • pp.26-36
    • /
    • 2016
  • Emerging trends for cardiac tissue engineering are focused on increasing the biocompatibility and tissue regeneration ability of artificial heart tissue by incorporating various cell sources and bioactive molecules. Although primary cardiomyocytes can be successfully implanted, clinical applications are restricted due to their low survival rates and poor proliferation. To develop successful cardiovascular tissue regeneration systems, new technologies must be introduced to improve myocardial regeneration. Electrospinning is a simple, versatile technique for fabricating nanofibers. Here, we discuss various biodegradable polymers (natural, synthetic, and combinatorial polymers) that can be used for fiber fabrication. We also describe a series of fiber modification methods that can increase cell survival, proliferation, and migration and provide supporting mechanical properties by mimicking micro-environment structures, such as the extracellular matrix (ECM). In addition, the applications and types of nanofiber-based scaffolds for myocardial regeneration are described. Finally, fusion research methods combined with stem cells and scaffolds to improve biocompatibility are discussed. [BMB Reports 2016; 49(1): 26-36]

저주파 펄스 전자기장 자극에 의한 피부 조직괴사 완화 효과 (Effect of Skin Tissue Necrosis Relaxation by Low Frequency Pulsed Electromagnetic Fields (LF-PEMF) Stimulation)

  • 이자우;김준영;이용흠
    • 대한의용생체공학회:의공학회지
    • /
    • 제42권1호
    • /
    • pp.25-30
    • /
    • 2021
  • Objective: The aim of this study is to consider the effect of skin tissue necrosis by improving blood flow in animal skin models for low frequency pulsed electromagnetic fields (LF_PEMF) stimulation. Methods: Twenty rats (Wistar EPM-1 male, 280-320 g) were randomly divided into control groups (n=10) and the PEMF groups (n=10). To induce necrosis of the skin tissue, skin flap was treated in the back of the rat, followed by isolation film and skin flap suturing. Subsequently, the degree of necrosis of the skin tissue was observed for 7 days. The control group did not perform any stimulation after the procedure. For the PEMF group, LF_PEMF (1 Hz, 10 mT) was stimulated in the skin flap area, for 30 minutes a day and 7 days. Cross-polarization images were acquired at the site and skin tissue necrosis patterns were analyzed. Results: In the control group, skin tissue necrosis progressed rapidly over time. In the PEMF group, skin tissue necrosis was slower than the control group. In particular, no further skin tissue necrosis progress on the day 6. Over time, a statistically significant difference from the continuous necrosis progression pattern in the control group was identified (p<0.05). Conclusions: It was confirmed that low frequency pulsed electromagnetic fields (LF_PEMF) stimulation can induce relaxation of skin tissue necrosis.

초기변형률에 의한 미소바늘의 피부조직 관통력 감소 (Prestrain-induced Reduction in Skin Tissue Puncture Force of Microneedle)

  • 김종훈;박성민;남경목;윤상희
    • 대한기계학회논문집A
    • /
    • 제40권10호
    • /
    • pp.851-856
    • /
    • 2016
  • 최근 미세가공기술이 발전함에 따라 생체분해성 소재 기반의 미소바늘 혹은 미소바늘 주사기에 대한 연구가 각광을 받고 있다. 일반적으로 생체분해성 소재는 기계적 강도가 낮아 생체분해성 소재 기반의 미소바늘은 피부조직 관통 시 구부려지거나 파손되는 문제점을 가지고 있다. 본 연구에서는 기계적 강도가 향상된 생체적합성 소재를 새로이 합성하는 대신에 미소바늘 삽입 전 피부조직에 1축 혹은 등2축 초기변형률을 가해 미소바늘의 피부조직 관통력을 감소시키는 방법에 대해 살펴본다. 실험에서는 1축 혹은 등 2축 초기변형률을 가해 준 돼지 피부조직에 미소바늘을 삽입시키면서 힘-시간 데이터를 획득함으로써 초기변형률에 의한 미소바늘의 관통력 변화를 측정하였다. 본 연구를 통해 미소바늘의 피부조직 관통력은 피부조직에 초기변형률을 가해주는 방법으로 감소시킬 수 있음을 확인하였다.

3-D High Resolution Ultrasonic Transmission Tomography and Soft Tissue Differentiation

  • Kim Tae-Seong
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권1호
    • /
    • pp.55-63
    • /
    • 2005
  • A novel imaging system for High-resolution Ultrasonic Transmission Tomography (HUTT) and soft tissue differentiation methodology for the HUTT system are presented. The critical innovation of the HUTT system includes the use of sub-millimeter transducer elements for both transmitter and receiver arrays and multi-band analysis of the first-arrival pulse. The first-arrival pulse is detected and extracted from the received signal (i.e., snippet) at each azimuthal and angular location of a mechanical tomographic scanner in transmission mode. Each extracted snippet is processed to yield a multi-spectral vector of attenuation values at multiple frequency bands. These vectors form a 3-D sinogram representing a multi-spectral augmentation of the conventional 2-D sinogram. A filtered backprojection algorithm is used to reconstruct a stack of multi-spectral images for each 2-D tomographic slice that allow tissue characterization. A novel methodology for soft tissue differentiation using spectral target detection is presented. The representative 2-D and 3-D HUTT images formed at various frequency bands demonstrate the high-resolution capability of the system. It is shown that spherical objects with diameter down to 0.3㎜ can be detected. In addition, the results of soft tissue differentiation and characterization demonstrate the feasibility of quantitative soft tissue analysis for possible detection of lesions or cancerous tissue.

Noninvasive Tissue-Reflectance Oximeter의 개발에 관한 연구 (A Study on the Development of Noninvasive Tissue-Reflectance Oximeter)

  • 장석윤;김남중;구철회;이준규;임현수
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.420-423
    • /
    • 1997
  • The oxygen saturation of blood can be measured by sensing the difference absorption in optical spectra of Hb and $HbO_2$, as the well known previous study. [1] In this study we developed the noninvasive tissue reflectance oximeter(TRO) using three kinds of LEDs which produce a peak spectral emission at a wavelength of 565, 660 and 940nm. And we tested the unction of the TR oximeter by comparing the output signals measured on normal tissue to measured on low oxygenated tissue. The results showed that oxygen saturation of blood and biological tissue can be monitored from the separation arrangement light source and detector.

  • PDF

Regeneration of a Cartilage Tissue by In Vitro Culture of Chondrocytes on PLGA Microspheres

  • Son, Jeong-Hwa;Park, So-Ra;Kim, Hyeon-Joo;Min, Byoung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권10호
    • /
    • pp.1577-1582
    • /
    • 2006
  • Cartilage tissue engineering has emerged as an alternative approach for reconstruction or repair of injured cartilage tissues. In this study, rabbit chondrocytes were cultured in a three-dimensional environment to fabricate a new cartilaginous tissue with the application of tissue engineering strategies based on biodegradable PLGA microspheres. Chondrocytes were seeded on PLGA microspheres and cultured on a rocking platform for 5 weeks. The PLGA microspheres provided more surface area to adhere chondrocytes compared with PLGA sponge scaffolds. The novel system facilitated uniform distribution of the cells on the whole of the PLGA microspheres, thus forming a new cartilaginous construct at 4 weeks of culture. The histological and immunohistochemical analyses verified that the number of chondrocytes and the amount of extracellular matrix components such as proteoglycans and type II collagen were significantly greater on the PLGA microspheres constructs as compared with those on the PLGA sponge scaffolds. Therefore, PLGA microspheres enhanced the function of chondrocytes compared with PLGA sponge scaffolds, and thus might be useful for formation of cartilage tissue in vitro.

가상수술기를 위한 비선형 생체 모델의 개발 (Development of a nonlinear biomechanical soft tissue model for a virtual surgery trainer)

  • 김정
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.911-914
    • /
    • 2005
  • Soft tissue characterization and modeling based on living tissues has been investigated in order to provide a more realistic behavior in a virtual reality based surgical simulation. In this paper, we characterize the nonlinear viscoelastic properties of intra-abdominal organs using the data from in vivo animal experiments and inverse FE parameter estimation algorithm. In the assumptions of quasi-linear-viscoelastic theory, we estimated the nonlinear material parameters to provide a physically based simulation of tissue deformations. To calibrate the parameters to the experimental results, we developed a three dimensional FE model to simulate the forces at the indenter and an optimization program that updates new parameters and runs the simulation iteratively. The comparison between simulation and experimental behavior of pig intra abdominal soft tissue are presented to provide a validness of the tissue model using our approach.

  • PDF

생체조직내에서 반사광을 이용한 확산 상수의 측정에 관한 연구 (A Study on Diffusion Constant Measurement Using Light Reflectance within Biological Tissue)

  • 임현수
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권2호
    • /
    • pp.227-234
    • /
    • 1996
  • This paper is the study of the diffusion constant in order to calculate the percent oxygenation and percent blood volume using reflectance light within biological tissue. The diffusion constant play major role in percent oxygenation and percent blood volume and varies with the biological material such as hemolyzed blood, whole blood, dermis and epidermis in vivo tissue. The diffusion constant can be modeled to consist of a contribution from bloodless tissue and blood present in tissue. The reflectance light for experimental are red light of 660nm, infrared light of 880nm, green light of 569nm. The correlation between the diffusion constant and biological tissue was analyzed by the intensity of reflectance light at different depth within human limb. The reflectance light was changed in response to physiological changes within biological tissue. The data for diffusion constant were obtained at different depth beneath the surface of the skin and will be utilized to amen the percent oxygenation and percent blood volume.

  • PDF

Engineered human cardiac tissues for modeling heart diseases

  • Sungjin Min;Seung-Woo Cho
    • BMB Reports
    • /
    • 제56권1호
    • /
    • pp.32-42
    • /
    • 2023
  • Heart disease is one of the major life-threatening diseases with high mortality and incidence worldwide. Several model systems, such as primary cells and animals, have been used to understand heart diseases and establish appropriate treatments. However, they have limitations in accuracy and reproducibility in recapitulating disease pathophysiology and evaluating drug responses. In recent years, three-dimensional (3D) cardiac tissue models produced using tissue engineering technology and human cells have outperformed conventional models. In particular, the integration of cell reprogramming techniques with bioengineering platforms (e.g., microfluidics, scaffolds, bioprinting, and biophysical stimuli) has facilitated the development of heart-on-a-chip, cardiac spheroid/organoid, and engineered heart tissue (EHT) to recapitulate the structural and functional features of the native human heart. These cardiac models have improved heart disease modeling and toxicological evaluation. In this review, we summarize the cell types for the fabrication of cardiac tissue models, introduce diverse 3D human cardiac tissue models, and discuss the strategies to enhance their complexity and maturity. Finally, recent studies in the modeling of various heart diseases are reviewed.