3-D High Resolution Ultrasonic Transmission Tomography and Soft Tissue Differentiation

  • Kim Tae-Seong (Dept. of Biomedical Engineering, Kyung Hee University)
  • Published : 2005.02.01

Abstract

A novel imaging system for High-resolution Ultrasonic Transmission Tomography (HUTT) and soft tissue differentiation methodology for the HUTT system are presented. The critical innovation of the HUTT system includes the use of sub-millimeter transducer elements for both transmitter and receiver arrays and multi-band analysis of the first-arrival pulse. The first-arrival pulse is detected and extracted from the received signal (i.e., snippet) at each azimuthal and angular location of a mechanical tomographic scanner in transmission mode. Each extracted snippet is processed to yield a multi-spectral vector of attenuation values at multiple frequency bands. These vectors form a 3-D sinogram representing a multi-spectral augmentation of the conventional 2-D sinogram. A filtered backprojection algorithm is used to reconstruct a stack of multi-spectral images for each 2-D tomographic slice that allow tissue characterization. A novel methodology for soft tissue differentiation using spectral target detection is presented. The representative 2-D and 3-D HUTT images formed at various frequency bands demonstrate the high-resolution capability of the system. It is shown that spherical objects with diameter down to 0.3㎜ can be detected. In addition, the results of soft tissue differentiation and characterization demonstrate the feasibility of quantitative soft tissue analysis for possible detection of lesions or cancerous tissue.

Keywords

References

  1. J. F. Greenleaf, S. A. Johnson, S. Lee, G. Herman, and E. Wood, in Acoustic Holography, N. Booth, Ed., pp. 591-603, Plenum, New York, 1974
  2. J. F. Greenleaf, S. A. Johnson, R. C. Bahn, B. Rajagopalan, and S. Kenue, Introduction to computed ultrasound tomography, Computer Aided Tomography and Ultrasonics in Medicine, pp. 125-136, 1979
  3. J. F. Greenleaf, and R. C. Bahn, 'Clinical Imaging with Transmissive Ultrasonic Computerized Tomography', IEEE Trans. Biomed. Engi, Vol. 28, No.2, pp. 177-185, 1981 https://doi.org/10.1109/TBME.1981.324789
  4. G. H. Glover, and J. C. Sharp, 'Reconstruction of Ultrasound Propagation Speed Distributions in Soft Tissue: Time-of-Flight Tomography', IEEE Trans. Sonics Ultrasonics, Vol. 24, No.4, pp. 229-234, 1977
  5. A. C. Kak, and K. A. Dines, 'Signal Processing of Broadband Pulsed Ultrasound: Measurement of Attenuation of Soft Biological Tissues', IEEE Trans. Biomed. Engi., Vol. 25, No.4, pp. 321-344, 1978 https://doi.org/10.1109/TBME.1978.326259
  6. J. G. Miller, J. R. Klepper, G. H. Brandenburger, L. J. Busse, M. O'Donnell, and J. W. Mimbs, Reconstructive Tomography based on Ultrasonic Attenuation, Computer Aided Tomography and Ultrasonics in Medicine, Raviv et al, (eds.), pp. 151-164, North-Holland Publishing Company, 1979
  7. P. L. Carson, C. R. Meyer, A. L. Scherzinger, and T. V. Oughton, 'Breast Imaging in Coronal Planes with Simultaneous Pulse Echo and Transmission Ultrasound', Science, Vol. 214, No.4, pp. 1141-1143, 1981 https://doi.org/10.1126/science.7302585
  8. J. S. Schreiman, J. J. Gisvold, J. F. Greenleaf, and R. C. Bahn, 'Ultrasound Transmission Computed Tomography of the Breast', Radiology, 150, pp. 523-530, 1984 https://doi.org/10.1148/radiology.150.2.6691113
  9. M. T. Nguyen, U. Faust, H. Bressmer, and P. Kugel, 'Ultrasound Tomography System Using Transmission and Reflection Mode with Electronic Scanning', IEEE Engi. Med. Bio. Soc., 14, pp. 2142-2143, 1992
  10. R. Stotzka, J. Wurfel, and T. O. Muller, 'Medical Imaging by Ultrasound-Computer Tomography', Proc. SPIE Medical Imaging, pp. 132, San Diego, 2002
  11. S. G. Azevedo, T. L. Moore, R. D. Huber, S. W. Ferguson, R. L. Leach, and S. E. Benson, 'Apparatus for Circular Tomographic Ultrasound', Proc. SPIE Medical Imaging, pp. 131, San Diego, 2002 V.Z. Marmarelis, T.-S. Kim, and R.E.N. Shehada, 'High Resolution Ultrasonic Transmission Tomography', Proc. SPIE Med. Imaging, Vol. 5035, pp. 33-40, 2003
  12. L. Landini and L. Verrazzani, 'Spectral characterization of tissues microstructure by ultrasounds: a stochastic approach', IEEE Trans. Ultrason., Ferroelec., Freq Contr., Vol. 37, No.5, pp. 448-456, 1990 https://doi.org/10.1109/58.105251
  13. Decomposition and Compounding of Ultrasound Medical Images with Wavelet Packets', IEEE Trans. Med. Imaging, Vol. 20, No.8, pp. 764-771, 2001 https://doi.org/10.1109/42.938244
  14. G. Georgiou, and F. S. Cohen, 'Tissue Characterization Using the Continuous Wavelet Transform', IEEE Trans. Ultrason., Ferroelec., Freq. Contr., Vol. 48, No.2, pp. 355-363, 2001 https://doi.org/10.1109/58.911718
  15. K. A. Wear, 'The Effects of Frequency-Dependent Attenuation and Dispersion on Sound Speed Measurements: Applications in Human Trabecular Bone', IEEE Trans. Ultrason., Ferroelec., Freq. Contr., Vol. 47, No.1, pp. 265-273, 2000 https://doi.org/10.1109/58.818770
  16. P. He, 'Acoustic parameter estimation based on attenuation and dispersion measurements', Proc. IEEE Eng. Med. Biol. Soc., Vol. 20, pp. 775-778, 1998
  17. T.-S. Kim, C. Huang. J. Jeong, D. Shin, M. Singh, and V. Z. Marmarelis, 'Sinoqram. enhancement for ultrasonic transmission tomography using coherence enhancing diffusion', IEEE Int. Symposium on Ultrasonics, 1816-1819, 2003
  18. G. N. Ramachandran, and A. V. Lakshminarayanan, 'Three-dimensional reconstruction from radiographs and electron micrographs: applications of convolutions instead of Fourier transforms', Proc. Nat. Acad. Sci. U.S., Vol. 68, No. 9, pp. 2236-2240, 1971
  19. T.-S. Kim, S. Do, and V. Z. Marmarelis, 'Multi-band tissue differentiation in ultrasonic transmission tomography', Proc. SPIE Medical Imaging, Vol. 5035, pp. 41-48, 2003
  20. C.-I. Chang, D. C. Heinz, 'Constrained Subpixel Target Detection for Remotely Sensed Imagery', IEEE Trans. Geosci. Remote Sensing, Vol. 38, No.3, pp. 1144-1159, 2000 https://doi.org/10.1109/36.843007
  21. T.-S. Kim, M. Singh, W. Sungkarat, C. Zarow, and H. Chui, 'Automatic Reigstration of Postmortem Brain Slices to MRI Reference Volume', IEEE Trans. Nucl. Sci., Vol. 47, No. 4, pp. 1607-1613, 2000 https://doi.org/10.1109/23.873023
  22. T.-S. Kim, R. E. N, Shehada, and V. Z. Marmarelis, 'Nonlinear modeling of ultrasound transmit-receive system using Laguerre-Volterra networks', Proc. SPIE Medical Imaging, Vol. 5035, pp. 62-69, 2003