• Title/Summary/Keyword: Tire Noise

Search Result 205, Processing Time 0.023 seconds

The Study of Reduction Technologies of Tire Cavity Resonance Noise (타이어 공명 소음(Tire Cavity Resonance Noise) 저감에 관한 연구)

  • Bang, M.J.;Choi, S.I.;Choo, K.C.;Lee, H.J.;Son, C.E.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.596-599
    • /
    • 2008
  • Traditionally, tire made a role of function, which is supporting vehicle load, making brake, transferring traction, etc. But tire is a part of vehicle design, nowadays. In accordance with this market trend, customers need a wide tread design tire (i.e. low series tire). Generally low Series Tire means stiffer than general tire. That brings out increasing road noise. (Especially tire cavity resonance noise) Tire noise is divided in structure home noise and air borne noise. Tire cavity resonance noise (structure home noise) come from vibration between tire and vehicle. In the study, we investigated that tire cavity resonance noise is affected by stiffness of tread and sidewall.

  • PDF

A Study on Pass-by Noise Performance for Tire/Road (타이어/노면에 대한 Pass-by Noise 특성 연구)

  • Kang, Young Kyu;Oh, YagJeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.462-465
    • /
    • 2014
  • It is well known that tire/road factors have a large influence on overall tire performance. In this paper, the basic study on the effects of tire/road factors on the pass-by noise performance of tire labeling has been carried out through experimental tests. The tire pass-by noise is affected by road characteristic factors, especially greatly influenced by road friction coefficient, and the next dominant factor is road chipping size. For several authorized pass-by noise test tracks, the pass-by noise correlation test has been done to know the test site effect, which results in 2~3dB(A) variation of pass-by noise level. Finally, it is shown that the winter tire is differently influenced by the pass-by noise test track characteristics, as compared to all-season tire and summer tire.

  • PDF

Tire Cavity Noise Reducing Material Development (타이어 공명 소음 저감체 개발)

  • Lee, Sang-Ju;Kang, Hyun-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.658-661
    • /
    • 2008
  • Vibrations transmitted through rolling tire are major sources of road noise in vehicle interior on the range of $0{\sim}500Hz$. Among various road noises, tire cavity noise makes many problems recently. Vehicle NVH performance has improved better and road surfaces are made well. But tires are changed to high inches and low series. So tire cavity noise becomes more serious. In this paper, a designed material for reducing tire cavity noise is proposed. On the surface inside tire, this material is attached at one position using double-tape. This material disperses the pressure variations inside the tire. So a spindle forces at wheel center are reduced. And tire cavity noise at vehicle interior is also reduced. Durability is verified by tire only test and vehicle test. Noise performance also compared with peak levels after attaching this material.

  • PDF

The reduction of Tire pattern noise by using pitch sequence (피치배열을 이용한 타이어 패턴노이즈 저감)

  • Hwang S.W.;Bang M.J.;Kim S.J.;Cho C.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.611-614
    • /
    • 2005
  • It is well known that tire tread pattern has much influence on the tire pattern noise. The paper describes the method of pattern noise reduction by using the pitch sequence, both on the smooth asphalt roads and on the trenched concrete roads. The noise of tire is classified as either airborne or structure borne noise. Pattern noise through the airborne is considered as a major noise source at high speeds. As block impacting and air pumping by tread patterns are major noise source, tire pattern noise can be greatly influenced by optimal pitch sequence. The goal of this paper is to provide tire engineers with pitch sequence to reduce pattern noise effectively.

  • PDF

The correlation analysis of tire airborne noise and vehicle road noise for the tire noise evaluation (Tire noise 평가를 위한 Tire airborne noise와 Vehicle road noise의 상관성 분석)

  • Lee, Min-Woo;Kim, Sung-Ho;Choi, Eun-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.654-655
    • /
    • 2008
  • In order to investigate the availability of tire airborne noise for vehicle road noise development, We measured the noise in condition of smooth road and coarse road. The correlation coefficient was analyzed using the articulation index of the tire airborne noise and the vehicle road noise. It has been found that the correlation between the tire airborne noise and the vehicle road noise is positively strong.

  • PDF

A Study on Tire Stiffness Design to reduce Tire Rumble Noise (럼블 소음 저감을 위한 타이어 강성 설계 방안 연구)

  • Kin, Kun-Ho;Kang, Young-Kyu;Kim, Kee-Woon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.298-304
    • /
    • 2012
  • The development of low rolling resistance tire with weight reduction in tire and vehicle may induce high level of tire/road noise, especially the rumble road noise on rough road. In this paper, the design factor for good rumble noise is considered in view of tire and vehicle. For the 3 mid-sized sedans, the rumble noise is very sensitive to the test vehicle. And it is concluded that the tire with high tread part stiffness and low sidewall part stiffness shows best rumble noise performance, and the rumble noise is in trade-off relation with cavity resonance noise. So, it is desirable to select and change proper construction design factors to have good tire/vehicle rumble noise.

  • PDF

The Study on the Difference of Road Noise due to change the Suspension and Tire by Feeling Test (실차감성평가를 통한 서스펜션 및 타이어 변화에 따른 Road Noise 편차파악에 관한 연구)

  • 이태근;김기전
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.357-361
    • /
    • 2003
  • According to the remarkable reduction of the vehicle noise, the important of tire noise which is generated from the vehicle and the necessities of the researches for the noise reduction are emphasized. In this study, we have studied the road noise which is excited by the interaction between tire and road. In order to evaluate the road noise, we carry out the subjective test(feeling test). In order to consider the effect of the vehicle suspension for the tire/road noise, we are equipped with identical tires on the differential vehicle suspension and evaluate the road noise. In order to consider the effect of the tire structure for the tire/road noise, we evaluate the some tires with various structures. From the test results, we fine that the difference of road noise is generated by the variation of the vehicle suspension. Also, we can select the optimized tire structure which can be reduced the road noise.

  • PDF

Estimation of Tire-Pavement Noise for Concrete Pavement by using Mean Profile Depth (Mean Profile Depth를 이용한 콘크리트 포장의 타이어-노면소음 산정)

  • Hong, Seong Jae;Hyun, Tak Jib;Lee, Seung Woo;Kim, Hyung Bae;Kwon, Oh Sun
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.9-16
    • /
    • 2013
  • PURPOSES: There is a need to develop a method to incorporate tire-pavement noise in the pavement management system. Tire-pavement noise highly depends on the characteristics of pavement texture. Therefore, estimation of texture characteristics may give useful information to predict tire-pavement noise. This study aimed to find the relationship between tire-pavement noise and MPD(Mean Profile Depth) for concrete pavement. METHODS: MPD and tire-pavement noise were collected on the number of expressway sections including Central Inland Test Road in Korea. Statistical analysis was performed to find the correlationship between MPD and tire-pavement noise. In addition, multiple regression analysis to find the tire-pavement noise based on MPD and type of concrete pavement texture. RESULTS: Linear relationship between MPD and tire-pavement noise is observed for concrete pavement. Furthermore, a forensic equation to estimate tire-pavement noise based on MPD and texture types of concrete pavement is suggested. CONCLUSIONS: Tire-pavement noise on concrete pavement can be predicted based on the consideration of texture type and MPD estimation.

The study on tire Pattern Noise (타이어 패턴 소음에 대한 고찰)

  • Hwang, S.W.;Bang, M.J.;Rho, G.H.;Cho, C.T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.340-343
    • /
    • 2006
  • As the needs of consumer on ride comforts increase and the reduction of road traffic noise tightened step by step, the power unit noise emitted by cars has been reduced. It has been found that tire noise dominates noise produced by the power-train when vehicles are driven at high speeds. Therefore, in these days, tire/pavement noise is concerned. Tire/pavement noise is affected by pavement type and vehicle???s transmission loss. Tire noise mechanism is produced by several mechanisms. The sound of tire can propagate either through the air or through the structure of vehicle. Pattern noise is the result of pressure variations through the air to the interior side of vehicle. Especially, on smooth asphalt the periodicity of tread design, pitch sequence is important factor, which have an influence on the reduction of tire noise.

  • PDF

Study on Interior Noise Transfer Path Analysis by Tire Cavity Resonance (타이어 공동의 공명에 의한 차량 실내음 전달경로 연구)

  • Lee, Sang-Ju;Kang, Byun-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.129-133
    • /
    • 2005
  • Vibration transmitted through rolling tire is a major source of road noise in vehicle interior noise on the range of low frequency.($0{\sim}500Hz$) Among various road noises, tire cavity noise has very peak on $200{\sim}250Hz$. And generally it is generated by cavity resonance of tire. In this paper, tire cut-sample is used to calculate the tire cavity frequency. Cavity resonance frequency of tire is measured through vertical/tangential forces at load cell of axle using drum cleat impact. This method is useful to find cavity peak because measured forces do not have complex peaks. And changing the test conditions (air inflation, loads), tire cavity resonance characteristics are identified. Finally, vehicle interior noise is measured as tire/vehicle are changing. As difference of tire vertical force is bigger, interior noise level is higher at cavity frequency. Also we can assume that vehicle sensitivity is important factor at tire cavity noise.

  • PDF