• 제목/요약/키워드: Tire/Road

검색결과 271건 처리시간 0.021초

Analytical Method for Determination of the Content of Tire Wear Particle in Tire and Road Wear Particles

  • Son, Chae Eun;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • 제56권1호
    • /
    • pp.1-5
    • /
    • 2021
  • Tire and road wear particles (TRWPs) were collected from road dust and thermogravimetric analysis (TGA) was performed to measure the content of tire wear particles (TWPs) in the TRWPs. The TGA thermograms of TRWPs showed two weight loss steps associated with polymer decomposition including weight loss after 480℃ which may be due to road wear particles. Different samples gave different TGA thermograms because the types and contents of the road wear particles attached to the TWPs should be different from each other, and each TWP might have different composition. The TGA results of the model asphalt pavement wear particles, with (volatile organics + polymers + carbon black) : ash = 33.5 : 66.5, was applied to the TRWP results, and the TWP contents of TRWPs were found to be 50-65%. The zinc oxide content in the rubber compound was negligible.

타이어 마모성능 차이에 의한 타이어 마모입자 생성에 관한 기초 연구 (A Basic Study on the Generation of Tire & Road Wear Particles by Differences in Tire Wear Performance)

  • 강태우;김혁중
    • 한국건설순환자원학회논문집
    • /
    • 제9권4호
    • /
    • pp.561-568
    • /
    • 2021
  • 본 연구에서는 타이어 마모성능에 따른 타이어 마모입자 생성량 및 도로변 미세먼지 물질로써 타이어 소재와 도로 포장체 구성 성분의 정량화 분석을 위한 기초적 연구를 수행하였다. 이에, 타이어 트레드 부위 고무의 가황제/가황촉진제의 사용비를 달리하여 고무배합물을 제조하였다. 제조된 고무배합물의 물성 평가 결과 가황제/가황촉진제의 사용비가 증가할수록 가교밀도는 감소하여 마모성능이 불리한 조건임을 확인하였다. 밀폐된 실내 마모시험기에서도 가교밀도가 감소할수록 타이어 마모입자 생성량은 증가하였고, 손실량 100% 대비 84~86%의 타이어 마모입자를 포집할 수 있었다. 타이어 마모입자 중, 96.4~97.7% 분산, 2.3~3.6% 비산되는 것으로 평가되었다. 포집된 타이어 마모입자의 화학분석 결과, 타이어의 마모성능에 따라 타이어 마모입자 내 타이어와 도로 구성 성분 비율(63 : 37 → 75 : 25)이 변화됨을 확인 할 수 있었다. 본 연구에서는 타이어 마모성능에 따라 타이어 마모입자 발생에 대한 영향성을 관찰하기 위하여 실제 도로 현장의 조건 대비 가혹한 실내 마모환경으로부터 실험을 수행하였다. 이에 타이어 마모입자 발생이 도로 포장체 성분보다 더 높은 함량으로 분석되었다. 추후 실제 도로 환경에서 완제품 타이어와 실제 차량을 이용하여 자동차 도로변 미세먼지 저감을 위한 실증화 연구 방법을 도출할 계획이다.

자동차 도로소음 저감과 샤시 설계를 위한 타이어 구조진동에 관한 연구 (A study on the tire structure vibration for road noise reduction and chassis design)

  • 송윤섭
    • 한국정밀공학회지
    • /
    • 제12권6호
    • /
    • pp.137-144
    • /
    • 1995
  • The purpose of this study is to obtain a foundation data for chassis design and road noise reduction of automobiles. Using the combination of the automobile, radial tires and instrumentation equipment, experimental investigation was carried out to examine the characteris- tics of the structural vibration of tire as the key to obtaining the effective parameters for reducing road noise. From the results of this studies it has been confirmed that the specific ranges of natural frequency of tire exciting the suspension and chassis system. And the tire, axle and chassis natural frequency of automobile govern the road noise. Results show that material properties of tire and experimental condition are major parameter for shifting of tire natural frequency. These results would be utilized as basic materials for the design of chassis design with papametric study, which enables a designer of an automobile to foresee the influence of the various design factors or operating conditions.

  • PDF

관측기를 이용한 노면과 타이어 간의 마찰계수 추정 (Estimation of Tire-Road Friction Coefficient using Observers)

  • 정태영;이경수;송철기
    • 제어로봇시스템학회논문지
    • /
    • 제4권6호
    • /
    • pp.722-728
    • /
    • 1998
  • In this paper real-time estimation methods for identifying the tire-road friction coefficient are presented. Taking advantage of the Magic Formula Tire Model, the similarity technique and the specific model for the vehicle dynamics, a reduced order observer/filtered-regressor-based method is proposed. The Proposed method is evaluated on simulations of a full-vehicle model with an eight state nonlinear vehicle/transmission model and nonlinear suspension model. It has been shown through simulations that it is possible to estimate the tire-road friction from measurements of engine rpm, transmission output speed and wheel speeds using the proposed identification method. The proposed method can be used as a useful option as a part of vehicle collision warning/avoidance systems and will be useful in the implementation of a warning algorithm since the tire-road friction can be estimated only using RPM sensors.

  • PDF

A Variety of Particles Including Tire Wear Particles Produced on the Road

  • Jung, Ui Yeong;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • 제56권2호
    • /
    • pp.85-91
    • /
    • 2021
  • In this study, different types and shapes of various particles produced on the asphalt pavement road were analyzed. Road dust at a bus stop was collected and was separated as per their sizes by using a sieve shaker. Tire-road wear particles (TRWPs), asphalt pavement wear particles (APWPs), mineral particles, plant-related particles, glass beads, glass particles, road paint wear particles, plastic particles, and fibers were observed herein. The types and shapes of the particles varied depending on their sizes. TRWPs larger than 500 ㎛ were not observed. TRWPs with a size of 212-500 ㎛ were rarely present, but many TRWPs with a size smaller than 212 ㎛ were observed. APWPs were observed for whole-particle sizes of below 1,000 ㎛. A variety of particles on the road would lead to lower friction between the tires and the road, thereby increasing the braking distance of vehicles. Most of the particles include mineral particles, glass particles, and APWPs with rough surfaces. Therefore, the abrasion of the tire tread would accelerate owing to friction with the tough particles.

타이어 공명 소음 저감체 개발 (Tire Cavity Noise Reducing Material Development)

  • 이상주;강현석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.658-661
    • /
    • 2008
  • Vibrations transmitted through rolling tire are major sources of road noise in vehicle interior on the range of $0{\sim}500Hz$. Among various road noises, tire cavity noise makes many problems recently. Vehicle NVH performance has improved better and road surfaces are made well. But tires are changed to high inches and low series. So tire cavity noise becomes more serious. In this paper, a designed material for reducing tire cavity noise is proposed. On the surface inside tire, this material is attached at one position using double-tape. This material disperses the pressure variations inside the tire. So a spindle forces at wheel center are reduced. And tire cavity noise at vehicle interior is also reduced. Durability is verified by tire only test and vehicle test. Noise performance also compared with peak levels after attaching this material.

  • PDF

럼블 소음 저감을 위한 타이어 강성 설계 방안 연구 (A Study on Tire Stiffness Design to reduce Tire Rumble Noise)

  • 김건호;강영규;김기운
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.298-304
    • /
    • 2012
  • The development of low rolling resistance tire with weight reduction in tire and vehicle may induce high level of tire/road noise, especially the rumble road noise on rough road. In this paper, the design factor for good rumble noise is considered in view of tire and vehicle. For the 3 mid-sized sedans, the rumble noise is very sensitive to the test vehicle. And it is concluded that the tire with high tread part stiffness and low sidewall part stiffness shows best rumble noise performance, and the rumble noise is in trade-off relation with cavity resonance noise. So, it is desirable to select and change proper construction design factors to have good tire/vehicle rumble noise.

  • PDF

트레드 물성이 타이어 로드노이즈에 미치는 영향도 (The Study On Road Noise Affected By Tread Hardness)

  • 황성욱;김봉수;박남;방명제
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.266-269
    • /
    • 2006
  • Tire is in charge of a lot of function, which is supporting vehicle load, transferring traction and. brake, absorbing impact by road etc. As the silence of vehicle increase more important, the importance of tire noise is more raised. In recent, the study on reduction of tire noise is generally processed. Tire noise is divided in structure home noise and all borne noise. Tire tread properties have a lot of multiplicity. Rubber properties are caused by changing or tread hardness. That change Elastic Modulus and Loss Modulus, which is related by tire noise. In the study, we found that road noise is affected by tread hardness

  • PDF

타이어-노면 마찰계수 추정을 이용한 AEBS 알고리즘 (AEBS Algorithm with Tire-Road Friction Coefficient Estimation)

  • 한승재;이태영;이경수
    • 자동차안전학회지
    • /
    • 제5권2호
    • /
    • pp.17-23
    • /
    • 2013
  • This paper describes an algorithm for Advanced Emergency Braking(AEB) with tire-road friction coefficient estimation. The AEB is a system to avoid a collision or mitigate a collision impact by decelerating the car automatically when forward collision is imminent. Typical AEB system is operated by Time-to-collision(TTC), which considers only relative velocity and clearance from control vehicle to preceding vehicle. AEB operation by TTC has a limit that tire-road friction coefficient is not considered. In this paper, Tire-road friction coefficient is also considered to achieve more safe operation of AEB. Interacting Multiple Model method(IMM) is used for Tire-road friction coefficient estimation. The AEB algorithm consists of friction coefficient estimator and upper level controller and lower level controller. The numerical simulation has been conducted to demonstrate the control performance of the proposed AEB algorithm. The simulation study has been conducted with a closed-loop driver-controller-vehicle system using using MATLAB-Simulink software and CarSim Vehicle model.

휠 슬립 제어를 위한 타이어와 노면 사이의 타이어 제동력 및 노면 마찰계수 추정 (Estimation of Tire Braking Force and Road Friction Coefficient Between Tire and Road Surface For Wheel Slip Control)

  • 홍대건;허건수;윤팔주;황인용
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.517-523
    • /
    • 2004
  • Recently, wheel slip controllers with controlling the wheel slip directly has been studied using the brake-by-wire actuator. The wheel slip controller is able to control the braking force more accurately and can be adapted to various different vehicles more easily than the conventional ABS systems. The wheel slip controller requires the information about the tire braking force and road condition in order to achieve the control performance. In this paper, the tire braking forces are estimated considering the variation of the friction between brake pad and disk due to aging of the brake, moisture on the contact area or heating. In addition, the road friction coefficient is estimated without using tire models. The estimated performance of tire braking forces and the road friction coefficient is evaluated in simulations.