• Title/Summary/Keyword: Tip vortex

Search Result 283, Processing Time 0.028 seconds

Aerodynamic Property of Swallowtail Butterfly Wing in Gliding (글라이딩하는 제비나비 날개형상의 공력특성연구)

  • Lee, Byoung-Do;Park, Hyung-Min;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.395-398
    • /
    • 2007
  • In nature, the swallowtail butterfly is known to be a versatile flyer using gliding and flapping efficiently. Furthermore, it has long tails on the hind-wing that may be associated with the enhancement of the gliding performance. In the present study, we investigate the aerodynamic property of swallowtail butterfly wing in gliding. We use an immersed boundary method and conduct a numerical simulation at the Reynolds numbers of 1,000 - 3,000 based on the free-stream velocity and the averaged chord length for seven different attack angles. As a result, we clearly identify the existence of the wing-tip and leading-edge vortices, and a pair of the streamwise vortices generated along the hind-wing tails. Interestingly, at the attack angle of $10^{\circ},$ hairpin vortices are generated above the center of the body and travel downstream.

  • PDF

Characteristics of Low Frequency Aero-acoustic Noise Radiation for a Wind Turbine Generator of NREL Phase VI (NREL Phase VI 풍력발전기 저주파 소음방사 특성)

  • Mo, Jang-Oh;Kim, Byoung-Yun;Ryu, Byeng-Nam;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.504-507
    • /
    • 2009
  • The purpose of this work is to predict the low frequency aero-acoustic noise generated from the horizontal axis wind turbine, NREL Phase VI using large eddy simulation and Ffowcs-Williams and Hawkings model provided in the commercial code, FLUENT. Calculated aerodynamic performances such as shaft torque and power are compared with experimentally measured value. Performance results show a good agreement with experimental data within about 0.8%. If the distance by two times is changed from 32D to 64D toward the downstream region, sound pressure level is reduced by about 6.4dB.

  • PDF

NUMERICAL ANALYSIS OF UNSTEADY FLOW FIELD AND AEROACOUSTIC NOISE OF AN AXIAL FLOW FAN (축류팬의 비정상 유동장 및 유동소음의 수치 해석)

  • Kim, Wook;Hur, Nahm-Keon;Jeon, Wan-Ho
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.60-66
    • /
    • 2010
  • Unsteady Reynolds Averaged Navier-Stokes(URANS) and Large Eddy Simulation(LES) simulation of an axial flow fan are calculated upon same conditions and computational grids in order to study aeroacoustic noise of an axial flow fan numerically. Results of computed performance and predicted noise are compared with those of measurement. Both performances show accurate results with a significant difference of less than 5%. However, noise of LES result is more close to measured noise qualitatively than URANS. Levels of tonal noises of both LES and URANS are quite similar with those of measured at BPF(Blade Passing Frequency) in sound spectrum. However, as leading edge separation and tip vortex shedding phenomena of LES are showed more clearly than those of URANS, sound level of broadband noise of LES corresponds better than that of URANS, especially.

A Study on the baffle effect in a stirred mixer using simultaneous measurement of velocity/concentration fields (속도/농도 동시측정에 의한 회전교반기 내부 유동의 baffle 효과에 관한 연구)

  • Kim Yun Gi;Min Young Uk;Kim Kyung Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.35-38
    • /
    • 2003
  • Simultaneous measurement of velocity and concentration fields in a stirred mixer flow using a combined Stereo-PIV/Planar-LIF technique is carried out. Instantaneous velocity fields and concentration fields represent the local flow characteristics. A baffle is perpendicularly attached to the Wall to remove inactive region which shows very slow dispersion. It is found that the baffle produces tip vortex and breaking the divided streamline, so that mixing efficiency could be increases significantly.

  • PDF

Development of high performance and low noise compact centrifugal fan for cooling automotive seats (자동차 시트 쿨링용 고성능·저소음 컴팩트 원심팬 개발)

  • Kim, Jaehyun;Ryu, Seo-Yoon;Cheong, Cheolung;Jang, Donghyeok;An, Mingi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.396-403
    • /
    • 2018
  • In this paper, a high-performance and low-noise centrifugal fan is developed for cooling automotive seats which provide a driver with pleasant driving environment. First, the flow characteristics of the existing fan unit was analyzed using a fan performance tester and CFD (Computational Fluid Dynamics) simulations. The analysis of the predicted flow field indicated vortex flow near the tip of fan hub and stagnation flow on the top of fan hub. Two design points are devised to reduce the vortex flow and the stagnation flow observed in the existing fan unit. First, the cut-off clearance which is the minimum distance between the fan blade and the fan housing is increased to reduce the vortex strength and, as a result, to reduce the overall sound pressure level. Second, the hub shape is more modified to eliminate the stagnation flow. The validity of proposed design is confirmed through the numerical analysis. Finally, a prototype is manufactured with a basis on the numerical analysis result and its improved flow and noise performances are confirmed through the P-Q curves measured by using the Fan Tester and the SPL (Sound Pressure Level) levels measured in the anechoic chamber.

Influence of Turning Region and Channel Rotation on Pressure Drop in a Square Channel with Transverse Ribs (90° 요철이 설치된 정사각 덕트 내 압력강하에 곡관부 및 회전이 미치는 영향)

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.126-135
    • /
    • 2006
  • The pressure drop characteristics in a rotating two-pass duct with rib turbulators are investigated in the present study. The square duct has a hydraulic diameter $(D_h)$ of 26.7 mm, and $1.5mm{\times}1.5mm$ square $90^{\circ}-rib$ turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$ and the width of divider wall is 6.0mm or $0.225D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure drop distribution, the friction factor and thermal performance are presented for the leading, trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}$-turn produces Dean vortices that cause high pressure drop in the turn. The channel rotation results in pressure drop discrepancy between leading and trailing surfaces so that non-dimensional pressure drops are higher on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent pressure drop characteristics also change. As the rotation number increases, the pressure drop discrepancy enlarges.

A Study on the Mixture Formation Process of Evaporating Diesel Spray by Offset Incidence Laser Beam

  • Yeom, Jeong-Kuk;Kang, Byung-Mu;Lee, Myung-Jun;Chung, Sung-Sik;Ha, Jong-Yul;Hajime Fujimoto
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1702-1709
    • /
    • 2002
  • This paper analyzes heterogeneous distribution of branch-like structure at the downstream region of the spray. The liquid and vapor phase of the spray are obtained using a 35㎜ still camera and CCD camera in order to investigate spray structure of evaporating diesel spray. There have been many studies conducted on diesel spray structure but have yet only focused on the analyses of 2-D structure. There are a few information which is concerned with 3-D structure analysis of evaporating spray. The heterogeneous distribution of droplets in inner spray affects the mixture formation of diesel spray and the combustion characteristics of the diesel engines. In this study, the laser beam of 2-D plane was used in order to investigate 3-D structure of evaporating spray The incident laser beam was offset on the central axis of the spray. From the analysis of images taken by offset laser beam, we will examine the formation mechanism of heterogeneous distribution of the diesel spray by vortex flow at the downstream of the spray. The images of liquid and vapor phase of free spray are simultaneously taken through an exciplex fluorescence method. Through this, the branch-like structure consisting of heterogeneous distribution of the droplets forms high concentrated vapor phase at the periphery of droplets and at the spray tip.

The Study of Advanced Propeller Blade for Next Generation Turboprop Aircraft -Part I. Aerodynamic Design and Analysis (차세대 터보프롭 항공기용 최신 프로펠러 블레이드 연구 -Part I. 공력 설계 및 해석)

  • Choi, Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1017-1024
    • /
    • 2012
  • The aerodynamic design and analysis on advanced propeller with blade sweep was performed for recent turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. Propeller geometry is generated by varying chord length and pitch angle at design point of target aircraft. Advanced propeller is designed by apply the modified chord length, the tip sweep which is based on the geometry of conventional propeller. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and evaluated to be properly designed.

Study of the Cavitation Inception Speed (CIS) Improvement Through the Propeller Design and the Stern Appendage Modification (프로펠러 설계 및 선미 부가물 수정에 따른 캐비테이션 초기발생 선속(CIS) 성능 향상 연구)

  • Jong-Woo Ahn;Gun-Do Kim;Bu-Geun Paik;Young-Ha Park;Han-Shin Seol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.231-239
    • /
    • 2023
  • In order to improve the propeller Cavitation Inception Speed (CIS) performance, it needs to modify the propeller geometry and the wake distribution that flows into the propeller. In the previous study, the twisted angles of the V-strut were modified to improve propeller CIS, cavitation behavior and pressure fluctuation performances. Then the propeller behind the modified V-strut (New strut) showed better cavitation characteristics than that behind the existing V-strut (Old strut). However, the CIS of Suction Side Tip Vortex (SSTV) and Pressure Side Tp Vortex (PSTV) showed a big difference at behind each V-strut. In this study, the balance design is conducted to minimize the difference between SSTV CIS and PSTV CIS at behind each V-strut. To improve the propeller CIS performance, 1 propeller is designed at behind the old strut and 3 propellers are designed at behind the new strut. The propeller CIS is increased through the balance design and the stern appendage modification. The final propeller CIS is increased about 5.3 knots higher than that of the existing propeller at behind the old strut. On the basis of the present study, it is thought that the better improvement method for the propeller CIS would be suggested.

Design of KUH Main Rotor Small-scaled Blade (KUH 주로터 축소 블레이드 설계)

  • Kim, Do-Hyung;Kim, Seung-Ho;Han, Jung-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.32-41
    • /
    • 2009
  • In this study, scale-down design of full-scale Korean Utility Helicopter (KUH) main rotor blade has been investigated. The scaled model system were designed for the measurement of aerodynamic performance, tip vortex and noise source. For the purpose of considering the same aerodynamic loads, the Mach-scale method has been applied. The Mach-scaled model has the same tip Mach number, and it also has the same normalized frequencies. That is, the Mach-scaled model is analogous to full-scale model in the view point of aerodynamics and structural dynamics. Aerodynamic scale-down process could be completed just by adjusting scaling dimensions and increasing rotating speed. In the field of structural dynamics, design process could be finished by confirming the rotating frequencies of the designed blade with the stiffness and inertial properties distributions produced by sectional design. In this study, small-scaled blade sectional design were performed by applying domestic composite prepregs and structural dynamic characteristics of designed model has been investigated.

  • PDF