DOI QR코드

DOI QR Code

The Study of Advanced Propeller Blade for Next Generation Turboprop Aircraft -Part I. Aerodynamic Design and Analysis

차세대 터보프롭 항공기용 최신 프로펠러 블레이드 연구 -Part I. 공력 설계 및 해석

  • Choi, Won (Korea Aerospace Industries, LTD.)
  • Received : 2012.06.26
  • Accepted : 2012.11.13
  • Published : 2012.12.01

Abstract

The aerodynamic design and analysis on advanced propeller with blade sweep was performed for recent turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. Propeller geometry is generated by varying chord length and pitch angle at design point of target aircraft. Advanced propeller is designed by apply the modified chord length, the tip sweep which is based on the geometry of conventional propeller. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and evaluated to be properly designed.

깃끝단 후퇴각을 가지는 최신 터보프롭 항공기의 프로펠러 블레이드에 대한 공력설계 및 해석을 수행하였다. 프로펠러 형상 설계를 위한 익형은 HS1 계열을 적용하였다. 와류-깃요소 이론(Vortex-Blade element theory)을 기반으로 하고 최소에너지 손실 조건을 만족하는 Adkins의 방법을 적용하여 Conventional 프로펠러 블레이드에 대한 공력설계 및 성능해석을 하였다. 목표 항공기의 설계점에서 코드 길이와 피치각을 변경해 가며 프로펠러 형상을 생성하였다. Conventional 프로펠러 블레이드 형상 정보를 기반으로 코드 길이, 깃끝단 후퇴각을 수정 적용하여 최신 프로펠러를 설계하였다. 전산유체역학을 이용한 설계된 최신 프로펠러 공력특성 분석을 통하여 최신 프로펠러가 적절하게 설계되었음을 확인하였다.

Keywords

References

  1. W. Choi, J. H. Kim, 2011. 11, "Aerodynamic Analysis on Advanced Propeller Blade for Turboprop Aircraft", Proceeding of the 2011 KSAS Fall Conference.
  2. Ranson, Lori., 2011, "FARNBOROUGH: Bombardier noncommittal on timing of Q400X". Flightglobal. Retrieved 8 December 2011.
  3. Colman Shattuck, Jon Young., 1993, "Modern Propeller Technology for Advanced Turboprop Aircraft", AIAA/SAE/ASME/ASEE 20th Joint Propulsion Conference and Exhibit.
  4. F.B. Metzger and C. Rohrbach, 1984, "Benefits of Blade Sweep for Advanced Turboprops", Hamilton Stamlard, AIAA/SAE/ASME/ASEE 21st Joint Propulsion Conference.
  5. Rolland G. Dalgneault and Donald G. Hall, 1982, "Advanced Propeller Technology for New Commuter Aircraft", Commuter Aircraft and Airline Operations Meeting.
  6. Jan Roskam, "AIRPLANE AERODYNAMICS AND PERFORMANCE", DARcorporation, 2008
  7. R.M. Bass and D.G.M. Davis, 1985, "A Review of Some Recent U.K. Propeller Developments", AIAA/SAE/ASME/ASEE 21st Joint Propulsion Conference.
  8. Lee, K.H, Jeon, Y.H, Bae, E.S, Lee, D.H, Lee, K.T, 2004, "Implementation of the Numerical Optimization for the Micro-Air Vehicle Propeller," 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York.
  9. Adkins, Charles N., Liebeck, Robert H, 1983, "Design of Optimum Propellers," American Institute of Aeronautices and Astronautics.
  10. June-Mo Kim, Sejong Oh, 1999, "Aerodynamic Optimal Design for Wind Turbine Blades and Its Wind Tunnel Tests", Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 27, No. 6, pp. 21-29.
  11. Elliott. G. Reid, 1943, "Studies of Blade Shank Form and Pitch Distribution for Constant-Speed Propellers", National Advisory Committee For Aeronautics Technical Note, No. 947.
  12. W. Choi, J. H. Kim, 2011. 5, "CFD Analysis of Aerodynamic Characteristics of Regional Turboprop Aircraft Propeller", Proceeding of the 2011 KSCFE Spring Conference, pp. 447-452.
  13. J.A. Lieser, D. Lohmann, C.-H. Rohardt, 1997, "Aeroacoustic Design of a 6-Bladed Propeller", Aerospace Science and Technology, No.7., pp. 381-389.
  14. R.M.A. Marretta, C. Orlando, M. Carley, , 2009, "Adaptive BEM for Low Noise Propeller Design", The Open Acoustics Journal.

Cited by

  1. Numerical Study on the Power-on Effect of a Pusher-propeller Aircraft using CFD vol.42, pp.1, 2014, https://doi.org/10.5139/JKSAS.2014.42.1.59
  2. The Study of Advanced Propeller Blade for Next Generation Turboprop Aircraft -Part II. Static Structural Design and Test vol.42, pp.4, 2014, https://doi.org/10.5139/JKSAS.2014.42.4.336
  3. The Static Structural Design and Test of High Speed Propeller Blade vol.17, pp.4, 2014, https://doi.org/10.5293/kfma.2014.17.4.011