• Title/Summary/Keyword: Timing phase

Search Result 372, Processing Time 0.026 seconds

Effect of Valve Lift and Timing on Internal Exhaust Gas Recirculation and Combustion in DME Homogeneous Charge Compression Ignition Engine (DME 예혼합 압축 착화 엔진에서 밸브 양정과 개폐시기가 내부 배기가스 재순환과 연소에 미치는 영향)

  • Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.93-100
    • /
    • 2009
  • Intake/exhaust valve timing and exhaust cam lift were changed to control the internal exhaust gas recirculation (IEGR) and combustion phase of homogeneous charge compression ignition (HCCI) engine. To measure the IEGR rate, in-cylinder gas was sampled during from intake valve close to before ignition start. The lower exhaust cam made shorter valve event than higher exhaust cam and made IEGR increase because of trapping the exhaust gas. IEGR rate was more affected by exhaust valve timing than intake valve timing and increased as exhaust valve timing advanced. In-cylinder pressure was increased near top dead center due to early close of exhaust valve. Ignition timing was more affected by intake valve timing than exhaust valve timing in case of exhaust valve lift 8.4 mm, while ignition timing was affected by both intake and exhaust valve timing in case of exhaust valve 2.5 mm. Burn duration with exhaust valve lift 2.5 mm was longer than other case due to higher IEGR rate. The fuel conversion efficiency with higher exhaust valve lift was higher than that with lower exhaust valve lift. The late exhaust and intake maximum open point (MOP) made the fuel conversion efficiency improve.

The Scheme for Improving the Performance of Ranging Code Detection over OFDMA Systems in Uplink (OFDMA 시스템 상향링크의 레인징 부호 검출 성능 향상 기법)

  • Kim Ki-Nam;Kim Jin-Ho;Cho Sung-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6A
    • /
    • pp.575-585
    • /
    • 2006
  • In Orthogonal Frequency Division Multiple Access (OFDMA) systems, timing synchronization in uplink is accomplished by an initial uplink synchronization called an initial ranging process. The Base Station's receiver synchronizes the symbol timing to specific user's symbol and the other user's symbols have some Symbol Timing Offset (STO). Linear phase shift is occurred by each user's STO in an OFDMA symbol. The Multiple Access Interference (MAI) caused by the summation of each user's linear phase shift degrades the performance of ranging code detection. In this paper, we propose an initial ranging symbol structure with common ranging code for phase shift estimation and compensation. We car estimate the average of phase shift that is generated by each user's STO and compensate this phase shift by using common ranging code. This scheme will suppress the MAI and provide better detection performance than conventional process.

Influence of Kinesio Taping of Patient with Foot Drop following CVA (편마비 환자의 족하수에 운동성 테이핑 적용이 보행능력에 미치는 영향)

  • Jung, Sam-Hee;Kong, Se-Jin;Yoon, Jung-Gyu
    • Journal of Korean Physical Therapy Science
    • /
    • v.7 no.2
    • /
    • pp.607-613
    • /
    • 2000
  • Objective: This study is designed to examine how an application of a kinesio taping to the foot drop of a hemiplegic patient affects the functional recovery of a gait. Method: The patient was a man with left hemiplegia of about 11 months' duration. a single subject design (ABAB design) was used to investigate the timing difference at a stance phase between an unaffected side and an affected side in the gait ability of the hemiplegic patient by using the kinesio taping. The study was divided into four phase: an initial base-line, an experimental, a second base-line, and second experimental phase. Result: The timing difference at a stance phase between an unaffected side and an affected side in the gait was decreased in the case of the affected side by following the result of applying the kinesio taping to a lower extremity. Conclusion: The kinesio taping applied to the foot drop of a hemiplegic patient affects the improvement of the gait ability.

  • PDF

Joint Carrier and Symbol Timing Recovery Using Repetitive Preamble (반복적인 프리엠블을 이용한 반송파 및 심볼 타이밍 동시 복원)

  • 오성근;황병대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1436-1444
    • /
    • 2000
  • In this paper, we propose the joint carrier and symbol timing recovery algorithm using repetitive preamble and differential detection for burst modem. The proposed algorithm can estimate the frequency offset and the symbol timing error regardless of the amount of frequency offset, with a high accuracy, even using very short preamble and at low SNR values. The algorithms for continuous phase frequency shift keying (CPFSK) and phase shift keying (PSK) types are developed. Through computer simulations, we compare the proposed algorithm with the existing algorithms on the estimation accuracy in terms of the preamble length, and analyze those bit error rate(BER) performance.

  • PDF

Ionospheric Storm Detection Method Using Multiple GNSS Reference Stations

  • Ahn, Jongsun;Lee, Sangwoo;Heo, Moonbeom;Son, Eunseong;Lee, Young Jae
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.3
    • /
    • pp.129-138
    • /
    • 2019
  • In this work, we propose detection method for ionosphere storm that occurs locally using widespread GNSS reference stations. For ionosphere storm detection, we compare ionosphere condition with other reference stations and estimate direction of movement based on ionosphere time variation. The method use carrier phase measurement of dual frequency, for accuracy and precision of test statistics, are evaluated with multiple GNSS reference stations data.

An OFDM Frequency Offset Estimation Scheme Robust to Timing Error (시간 오차에 강인한 OFDM 주파수 옵셋 추정 기법)

  • Kim Sang-Hun;Yoon Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6C
    • /
    • pp.623-628
    • /
    • 2006
  • This paper addresses the frequency offset estimation problem in the presence of the timing error for OFDM systems. When the timing error exists, the correlation value used for the frequency offset estimation could be reduced significantly due to the timing error, resulting in considerable degradation in estimation performance. In this paper, using the coherence phase bandwidth (CPB) and a threshold, a novel frequency offset estimation scheme is proposed and based on which, an efficient timing error estimation scheme is also proposed for the re-estimation of the frequency offset. The performance comparison results show that the proposed frequency offset estimation scheme is not only more robust to the timing error but also has less computational complexity, as compared with the conventional schemes. It is also demonstrated by simulation that theproposed timing error estimation scheme gives a reliable estimate of the timing error.

Combustion Characteristics of Gasoline HCCI Engine with DME as an Ignition Promoter (DME를 착화촉진제로 사용한 가솔린 예혼합 압축 착화 엔진의 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.178-185
    • /
    • 2006
  • This paper investigates the steady-state combustion characteristics of the Homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out its benefits in exhaust gas emissions. HCCI combustion is an attractive way to lower carbon dioxide($CO_2$), nitrogen oxides(NOx) emission and to allow higher fuel conversion efficiency. However, HCCI engine has inherent problem of narrow operating range at high load due to high in-cylinder peak pressure and consequent noise. To overcome this problem, the control of combustion start and heat release rate is required. It is difficult to control the start of combustion because HCCI combustion phase is closely linked to chemical reaction during a compression stroke. The combination of VVT and DME direct injection was chosen as the most promising strategy to control the HCCI combustion phase in this study. Regular gasoline was injected at intake port as main fuel, while small amount of DME was also injected directly into the cylinder as an ignition promoter for the control of ignition timing. Different intake valve timings were tested for combustion phase control. Regular gasoline was tested for HCCI operation and emission characteristics with various engine conditions. With HCCI operation, ignition delay and rapid burning angle were successfully controlled by the amount of internal EGR that was determined with VVT. For best IMEP and low HC emission, DME should be injected during early compression stroke. IMEP was mainly affected by the DME injection timing, and quantities of fuel DME and gasoline. HC emission was mainly affected by both the amount of gasoline and the DME injection timing. NOx emission was lower than conventional SI engine at gasoline lean region. However, NOx emission was similar to that in the conventional SI engine at gasoline rich region. CO emission was affected by the amount of gasoline and DME.

PGA: An Efficient Adaptive Traffic Signal Timing Optimization Scheme Using Actor-Critic Reinforcement Learning Algorithm

  • Shen, Si;Shen, Guojiang;Shen, Yang;Liu, Duanyang;Yang, Xi;Kong, Xiangjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4268-4289
    • /
    • 2020
  • Advanced traffic signal timing method plays very important role in reducing road congestion and air pollution. Reinforcement learning is considered as superior approach to build traffic light timing scheme by many recent studies. It fulfills real adaptive control by the means of taking real-time traffic information as state, and adjusting traffic light scheme as action. However, existing works behave inefficient in complex intersections and they are lack of feasibility because most of them adopt traffic light scheme whose phase sequence is flexible. To address these issues, a novel adaptive traffic signal timing scheme is proposed. It's based on actor-critic reinforcement learning algorithm, and advanced techniques proximal policy optimization and generalized advantage estimation are integrated. In particular, a new kind of reward function and a simplified form of state representation are carefully defined, and they facilitate to improve the learning efficiency and reduce the computational complexity, respectively. Meanwhile, a fixed phase sequence signal scheme is derived, and constraint on the variations of successive phase durations is introduced, which enhances its feasibility and robustness in field applications. The proposed scheme is verified through field-data-based experiments in both medium and high traffic density scenarios. Simulation results exhibit remarkable improvement in traffic performance as well as the learning efficiency comparing with the existing reinforcement learning-based methods such as 3DQN and DDQN.

Carrier Phase Based Navigation Algorithm Design Using Carrier Phase Statistics in the Weak Signal Environment

  • Park, Sul Gee;Cho, Deuk Jae;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.7-14
    • /
    • 2012
  • Due to inaccurate safe navigation estimates, maritime accidents have been occurring consistently. In order to solve this, the precise positioning technology using carrier phase information is used, but due to high buildings near inland waterways or inclination, satellite signals might become weak or blocked for some time. Under this weak signal environment for some time, the GPS raw measurements become less accurate so that it is difficult to search and maintain the integer ambiguity of carrier phase. In this paper, a method to generate code and carrier phase measurements under this environment and maintain resilient navigation is proposed. In the weak signal environment, the position of the receiver is estimated using an inertial sensor, and with this information, the distance between the satellite and the receiver is calculated to generate code measurements using IGS product and model. And, the carrier phase measurements are generated based on the statistics for generating fractional phase. In order to verify the performance of the proposed method, the proposed method was compared for a fixed blocked time. It was confirmed that in case of a weak or blocked satellite signals for 1 to 5 minutes, the proposed method showed more improved results than the inertial navigation only, maintaining stable positioning accuracy within 1 m.

Design of burst receiver with symbol timing and carrier synchronization (심벌동기와 반송파동기를 가진 버스트 수신기의 설계)

  • 남옥우
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.44-48
    • /
    • 2001
  • In this paper we describe the design of symbol timing and carrier synchronization algorithms for burst receiver. The demodulator consists of digital down converter, matched filter and synchronization circuits. For symbol timing recovery we use modified Gardner algorithm. And we use decision directed method for carrier phase recovery. For the sake of performance analysis, we compare simulation results with the board implemented by FPGA which is APEX20KE series chip for Alter. The performance results show it works quite well up to the condition that a frequency offset equal to 0.1% of symbol rate.

  • PDF