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Abstract 
 

Advanced traffic signal timing method plays very important role in reducing road congestion 
and air pollution. Reinforcement learning is considered as superior approach to build traffic 
light timing scheme by many recent studies. It fulfills real adaptive control by the means of 
taking real-time traffic information as state, and adjusting traffic light scheme as action. 
However, existing works behave inefficient in complex intersections and they are lack of 
feasibility because most of them adopt traffic light scheme whose phase sequence is flexible.  
To address these issues, a novel adaptive traffic signal timing scheme is proposed. It's based 
on actor-critic reinforcement learning algorithm, and advanced techniques proximal policy 
optimization and generalized advantage estimation are integrated. In particular, a new kind of 
reward function and a simplified form of state representation are carefully defined, and they 
facilitate to improve the learning efficiency and reduce the computational complexity, 
respectively. Meanwhile, a fixed phase sequence signal scheme is derived, and constraint on 
the variations of successive phase durations is introduced, which enhances its feasibility and 
robustness in field applications. The proposed scheme is verified through field-data-based 
experiments in both medium and high traffic density scenarios. Simulation results exhibit 
remarkable improvement in traffic performance as well as the learning efficiency comparing 
with the existing reinforcement learning-based methods such as 3DQN and DDQN. 
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  1. Introduction 

Traffic signal timing (TST) is one of the fundamental problems in traffic engineering. It is 
of great importance to design and implement advanced signal timing scheme to reduce traffic 
congestion and pollution, and to achieve optimization and coordination of urban traffic. In 
recent decades, the blooming development of artificial intelligence makes the remarkable 
progress of modern intelligent transportation systems (ITS), e.g., intelligent signal control [1], 
big data analysis[2], [3], traffic flow prediction [4], pedestrian detection [5], etc. 

As a typical kind of machine learning schemes and algorithms, reinforcement learning (RL) 
enables an agent to achieve sequential decisions through interactions with environment so as 
to maximize the objective reward function in a trail-and-error manner [6]. It has become a 
promising research direction of TST owing to its excellent interactiveness and adaptability 
with the dynamically changing traffic environment. 

Early researches of RL-based TST method [7]–[9] mainly adopt tabular-based RL 
algorithms, which suffer from dimension curse in complicated traffic environment. Deep 
reinforcement learning (DRL) methods efficiently solve this problem by using deep neural 
networks to approximate state (or state-action) value functions, and present superior 
adaptability and stability in simulation experiments [10]–[12]. 

However, there still exists certain issues in DRL-based TST problem deserving further 
consideration. First and foremost, the traditional modeling methods are lack of efficiency in 
TST problem. Most existing works are value function-based DRL methods which relies on 
certain value functions that are hard to be appropriately defined or approximated in complex 
traffic scenarios. Meanwhile, the computational complexity of the methods are highly related 
to the dimensions of the defined state space and action space. The commonly used state 
representation such as discrete traffic state encoding (DTSE) [13] may significantly increase 
the dimensionality so as the computational complexity. 

From field-application perspective, existing works are lack of concerns about security and 
feasibility of the proposed methods. Particularly, the phase sequence is assumed to be 
adjustable in most of the proposed traffic timing schemes, which means all available traffic 
phases for the studied intersection are activated in a random sequence according to the agent’s 
action. Drivers and pedestrians around the intersection can’t predict the next activated traffic 
phase. Therefore, the traffic signal schemes with flexible phase sequence are obviously 
unfeasible in real urban traffic network. Apart from that, quite a few results are obtained from 
simulation environment, the validity deserves further verification in practical settings. 

In this paper, a novel RL-based scheme is proposed for TST problem. The main 
contributions include:  

1) A novel traffic signal timing scheme called PGA is proposed. It is built upon the 
advantage actor-critic (A2C) architecture, and it integrates the state-of-the-art RL 
techniques proximal policy optimization (PPO) [14] and generalized advantage 
estimation (GAE) [15]. 

2) A feasible and secure signal timing scheme is derived according to PGA. Particularly, 
complexity of the model's state space is significantly reduced and the proposed TST 
scheme is with the fixed phase sequence, the alteration of successive phase durations is 
mild, which is preferable in field applications. 

3) A new kind of reward function is proposed, and it significantly increases the 
convergence rate of the proposed scheme. Experimental results also indicate the traffic 
performance are remarkably improved by utilizing such reward function. 
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Comprehensive experiments are conducted based on real field-data, the results indicate that 
the traffic performance such as average queue length, average travel time and average vehicle 
delay are remarkably improved compared with the existing RL-based methods. 

The rest of the paper is organized as follows: the related work on RL-embedded traffic 
signal timing is reviewed in Section 2. Background of reinforcement learning is briefly 
introduced in Section 3. Formulations of RL-based TST schme and the essential ingredients 
are presented in Section 4. In Section 5, we specify the proposed TST model and the relevant 
RL algorithm. In Section 6, simulation results and discussions are provided. The paper is 
concluded in Section 7. 

2. Related Work 
As a typical kind of machine learning method, RL has been adopted in adaptive traffic timing 
control since 1990s [16]. Model-free RL makes no assumptions about the model of 
environment and formulates signal timing as a sequential decision-making problem. It collects 
traffic information (such as traffic density, queue length and average velocity) as the states, 
generates appropriate actions to adjust the traffic light scheme, and improves the policy by 
traffic performance around the intersections. By this means, it achieves real-time adaptive 
control thoroughly. Comprehensive reviews are shown in [17], [18]. 

According to the type of embedded RL algorithm, RL-based TST approaches can be 
categorized into three classes: value function-based, policy gradient-based and actor-critic 
method. Value function-based algorithms such as Q-learning [19] and SARSA [6] optimize 
their behavior indirectly based on the approximation of certain optimal value functions. Most 
of early TST models prefer tabular Q-learning [20] or SARSA  [9]. Designing schemes of state 
representation, action selection methods, reward definitions of tabular RL-TST model are 
investigated and compared in [21]. Most of them are coarse grained because the number of 
state-action pairs is limited. For example, the value of elapsed green time is converted from 0 
to 50 seconds to a scaled integer value from 0 to 9 in [9]. Different relative queue size among 
four lanes are mapped into 24 integers to distinguish the states in [22]. Large amounts of 
information are wasted by this kind of design. However, if the fine-grained schemes are chosen, 
the capacity of Q-value tabular can be really large. 

In order to alleviate the dimension curse of tabular RL and enhance its adaptability in large 
scale traffic environment, various value-based DRL methods are employed in traffic light 
control approaches [23]–[25], and turn out to be effective compensation to the tabular RL. The 
Q-value function is approximated by various deep neural networks in these articles, such as  
deep stacked autoencoders [23] and convolutional neural network [25]. Therefore, 
sophisticated RL elements such as state, action and reward can be used to enhance the 
method’s effectivity. 

However, value function-based RL inevitably requires massive computations in complex 
traffic scenarios, because the complexity of value function approximation hinges on the state 
space and action space. As an less commonly used alternative in TST, policy gradient-based 
method directly maps its observation to actions and updates the relevant parameters to achieve 
optimal policy.  Calculation complexity is significantly reduced by this mechanism. [26] builds 
the deep policy-gradient and deep Q-learning traffic control models, simulation results indicate 
that they can both find stable control policies. 

Actor-critic method [6] is the composite of policy gradient-based and value function-based 
algorithms,  where the actor improves the policy via policy gradient methods, and the critic 
evaluates the policy by estimating certain value functions. [27] establishes discrete and 
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continuous actor-critic traffic signal controllers in recurrent congested traffic network, and 
compares different function approximators. [28] proposes a deep deterministic policy 
gradient(DDPG) based TST scheme. Continuous actions, variable phases sequence and cycle 
time are both adopted in it.  

Superiority of RL-based TST approaches is fully displayed in these works, but the design 
of traffic observation, action schemes and reward function are still lack of safety and feasibility. 
For example, most of action representations are designed as index of next activated traffic 
phase [13], [26], [29], which means the sequence of traffic phase is out-of-order, and that is 
not safe in field applications. In addition, the reward in [24] is linear weighted sum of multiple 
factors, including queue length, vehicle delay, waiting time and total travel time. It’s 
unnecessary to take too many elements into account. According to [30], some of these traffic 
metrics are relevant or equivalent, and there is no effective method to tune the weights for each 
component. Therefore, more efficient RL algorithm and more reasonable RL element schemes 
for TST are explored in this article. 

3. Background of Reinforcement Learning 

As mentioned in [6], RL enables an agent to interact with the environment and learn to map 
the situations into actions so as to maximize the expected total reward in a trial-and-error 
manner. 

As illustrated in Fig. 1, at each step t , the agent acquires the current state ts  that reflects 
the real-time information of the environment. RL enables an agent to interact with the 
environment and learn to map the situations into actions so as to maximize the expected total 
reward in a trial-and-error manner. According to policy ( | )t ta sθπ , the agent conducts action 

ta  and receives reward tr  from the environment. As a result of action ta , the environment 
yields and transmits a new state 1ts +  to the agent. Thus, the procedure (𝑠𝑠1,𝑎𝑎1, 𝑟𝑟1,⋯ , 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑟𝑟𝑡𝑡) 
forms a trajectory of the agent. RL algorithms aim to provide the agent with optimal policy so 
as to achieve the learning target, i.e., to maximize certain cumulative rewards, by exploring 
possible trajectories and updating the policy. 
 

 
Fig. 1. Reinforcement learning procedure 

In the following context, tR  denotes the discounted accumulated return from step t : 
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where [0,1]γ ∈  is the discounted factor, ( | )a sθπ denotes the policy parameterized by θ  
which essentially represents the action probability distribution under certain state: 

( | ) ( | )t ta s p a a s sθπ = = =                                                   (2) 
Moreover, under policy θπ , the probability of trajectory τ  is denoted by ( ; )p τ θ . In the 
considered set-ups, the learning objective for the agent is to maximize the return by training 
the policy: 

( ) ( ; ) tθ
arg maxU p R

τ

θ τ θ=∑                                                 (3) 

The estimation of the policy gradient can be computed and plugged into the gradient ascent 
algorithm [14]. For instance, in the vanilla policy-based method [31], it optimizes policy 
parameters θ  in the direction of ∇𝜃𝜃𝑈𝑈(𝜃𝜃), 

∇𝜃𝜃𝑈𝑈(𝜃𝜃) = 𝔼𝔼�[∇𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠)𝑅𝑅𝑡𝑡]                                         (4) 
where the empirical expectation 𝔼𝔼�[⋯ ]can be practically replaced by the average over a batch 
of real samples. 

However, the accumulated return tR  in (4) is with high variance in general, which may 
decrease sample efficiency and result in unsatisfactory convergence result. To overcome this 
problem, the well-known actor-critic algorithm, called the Advantage Actor-Critic (A2C) [32], 
is illustrated as follows. 

 
Fig. 2. Framework of Advantage Actor-Critic algorithm 

 
Fig. 2 exhibits the architecture and basic components of A2C. The essential idea of A2C is 

to replace the accumulated return tR  in (4) with the advantage function , ( , )t tA s aπ γ  to achieve 
the policy gradient, 

, , ,( , ) ( , ) ( )t t t t tA s a Q s a V sπ γ π γ π γ= −                                       (5) 
where , ( , )t tQ s aπ γ  is the discounted state-action value function that represents the expected 
return by choosing action ta  under state ts  according to policy ( | )t ta sπ , and , ( )tV sπ γ  is the 
discounted state value function that denotes the expected return that initiating from state ts  
according to policy θ , no matter what action is conducted. 
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Under (6), , ( )tV sπ γ  in (5) can be regarded as an average return or a baseline function, and 
, ( , )t tA s aπ γ  can be considered as the measure of whether the action ta  is better than any other 

action '
ta . The choice of such advantage function , ( , )t tA s aπ γ  will lead to the estimation of 
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policy gradient with much lower variance. However, in practice, the advantage function is not 
known a priori and it must be estimated. An ideal unbiased estimator ˆ

tA  of  , ( , )t tA s aπ γ  takes 
the following form: 

, ,
1

ˆ ( ) ( )t t t tA r V s V sπ γ π γγ += + −                                            (7) 
Consequently, replacing the accumulated return tR  in (4) with the advantage function 
estimator (7), it yields 

ˆ ˆ( ) [ log ( | ) ]tU a s Aθ θ θθ π∇ = ∇E                                           (8) 
(8) facilitates A2C algorithm to calculate the policy gradients, and effectively resolves the high 
trajectory variance problem. 

4. RL-based Traffic Signal Timing Formulation 
To formulate the concerned traffic signal timing problem w.r.t. the reinforcement learning 
model and algorithm, in this section, the basic ingredients, namely the state, the action and the 
reward, are carefully defined. Particularly, a new form of the state is provided to reduce the 
complexity caused by the mainstream high dimensional state representation. The actions are 
carefully designed as the moderate change of traffic phase durations without modifying the 
phase sequence, which will lead to a smooth and more practical timing scheme. Also, the new 
definition of reward improves the learning efficiency of the algorithm. 

4.1 State Space Representation 
The representation of the state in RL models directly effects the computational complexity and 
system performance. In TST problems, the state of the environment refers to the traffic 
information of certain traffic control areas, e.g. the intersection, the arterial road, the elevated 
road, etc. In recent years, the Discrete Traffic State Encoding (DTSE) technique [23] is 
commonly adopted to characterize the traffic information around the intersections [25], [29]. 
DTSE usually retrieves the traffic information from large sequences of traffic images by 
discretizing lanes approaching the intersection into different cells. For each cell, the vehicle 
information such as the vehicles' presence and speed are recorded as certain matrices. 
Normally, DTSE may provide comprehensive and detailed traffic information to the agent. 
However, some experimental results indicate that there is no significant improvement can be 
achieved by using high-resolution traffic state such as DTSE rather than the traditional 
standard traffic parameters such as occupancy, queue length, mean speed, etc. for the same 
TST model [33]. Moreover, high-resolution traffic state dramatically increases the storage 
requirements and computational complexity. 

Instead of DTSE, we define the following two types of traffic states: n
is and v

is , in the 
proposed RL model, where 𝑖𝑖 = 1, 2 ,⋯ ,𝑃𝑃, and P  is the number of phases in a signal cycle. 
To be specific, for the intersection under investigation, let iN  be the number of lanes 
associated with the i th phase, ,i jn  and ,i jv  represent the number of vehicles and mean speed 

of vehicles in lane j  within the i th phase, respectively. Then n
is  and v

is  are defined as 
follows: 

,
1

1 iN
n
i i j

ji

s n
N =

= ∑                                                             (9) 



4274                                                             Shen et al.: PGA: An Efficient Adaptive Traffic Signal Timing Optimization Scheme 
Using Actor-Critic Reinforcement Learning Algorithm 

,
1

1 iN
v
i i j

ji

s v
N =

= ∑                                                           (10) 

It is evident that n
is  denotes the average number of vehicles in lanes under the i th phase. It 

reflects the traffic flow distribution among different directions of the intersection. And v
is  

represents the average speed of vehicles in lanes associated with the i th phase, which 
indicates the occupancy degree (jammed or under-saturated) of the lanes at the intersection. 
By (9) and (10), define the state space 𝑆𝑆 ∈ ℝ2𝑃𝑃  for a signal timing scheme with P  phases, 
and state ts S∈  can be expressed as follows: 

𝑠𝑠𝑡𝑡 = [𝑠𝑠1𝑛𝑛,⋯ , 𝑠𝑠𝑃𝑃𝑛𝑛, 𝑠𝑠1𝑣𝑣 ,⋯ , 𝑠𝑠𝑃𝑃𝑣𝑣]                                               (11) 

4.2 Action Space Representation 
For TST problems, the agent perceives the environment by collecting traffic information, then 
according to the policy, it selects an action from the available action set under current state to 
modify the signal timing scheme. In our proposed RL model, we choose the fixed phase 
sequence scheme by considering the fact that it is more convenient and trustworthy in field 
applications. Therefore, the actions are defined to alter the durations of phases rather than alter 
the phase sequence. Besides, since the large change of phase durations between two 
consecutive cycles may cause certain problem for drivers and pedestrians, we set a constraint 
on the action so that each phase duration may only alter with a fixed adjustment. The choice 
of its value is crucial for the model’ s performance, so we conduct comparison experiments to 
explore the optimal value in Section 6.   

Consider a signal timing plan containing P  phases, define the action space 𝐴𝐴 ∈ ℝ2𝑃𝑃+1, and 
action 𝑎𝑎𝑡𝑡 ∈ 𝐴𝐴 can be expressed as follows: 

𝑎𝑎𝑡𝑡 = [𝑎𝑎1+,⋯ ,𝑎𝑎𝑃𝑃+,𝑎𝑎0,𝑎𝑎1−,⋯𝑎𝑎𝑃𝑃−]                                           (12) 
where ia+  denotes the action of increasing the length of i th phase by 5s, ia− denotes the action 
of decreasing the length of i th phase by 5s, and 0a  represents no change are taken for all 
phases duration, 𝑖𝑖 = 1, 2 ,⋯ ,𝑃𝑃 . In addition, all phase durations are bounded by certain 
predefined minimum and maximum green time ming  and maxg , respectively. This kind of 
action representation can be utilized to any intersections with variant number of phases. It is 
obvious that the dimensions of both state and action spaces are linear to the number of phases 
in the timing plan. 

4.3 Reward Function Representation 
After conducting the action, the feedback of the environment to the agent is characterized by 
an immediate reward. The definition of the reward is closely related to the optimal objective 
and plays the important role in achieving policy optimization. In the TST scenarios, the travel 
delay and queue length are commonly used as the reward since these standard traffic indexes 
reflect the mobility and traffic efficiency directly. Based on theoretical deductions and 
simulation results, [30] illustrated that using queue length as the reward function equals to 
optimizing the travel time. Considering the fact that with common sensors, e.g., surveillance 
cameras, the queue length is easier to get than any other information such as travel time, so in 
the proposed RL model, we use queue length as the main component of the reward function. 

Notice that in the definition of advantage function (5), the state value function , ( )tV sπ γ  is 
subtracted from the state-action value function , ( , )t tA s aπ γ . As previously discussed, this fact 
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implies that the state value function can be considered as the baseline which leads to much 
lower variance estimate of the policy gradient. Inspired by this idea, a new kind of reward is 
proposed in our RL model: 

𝑟𝑟𝑡𝑡 = −[𝑞𝑞𝑡𝑡 −
1
𝑇𝑇
∑ 𝑞𝑞𝑘𝑘𝑇𝑇
𝑘𝑘=1 ]                                                     (13) 

where 𝑇𝑇 is number of steps in an episode, 𝑞𝑞𝑡𝑡 is the current queue length, and 𝑞𝑞𝑘𝑘 denotes the 
history queue length in the last episode. An episode is one complete play of the agent 
interacting with the environment, which is composed of certain number of steps in this article. 
The TST model is trained in iterations, and one iteration equals to one episode. 

In equation (13), the average queue length of the last iteration is considered to be the 
baseline, and it is subtracted from the metrics of current time step. The underlying mechanism 
of this kind of reward is to encourage the agent to optimize the policy on the basis of last 
episode. In addition, the second term in (13) is a constant for each step during one episode, so 
it will improve learning efficiency without increasing number of variables to be determined. 

5. The PGA Algorithm for Traffic Signal Timing 
In the previous section, we formulate the RL scheme for TST with the explicit representations 
of the state, action and reward. In this section, we develop a new kind of RL-based learning 
algorithm to achieve effective and efficient. Particularly, the proximal policy optimization 
(PPO) and generalized advantage estimation (GAE) techniques are adopted in the algorithm, 
where the former technique improves sample efficiency and simplifies the implementation 
procedure in a reliable manner, and the latter provides an effective variance reduction scheme 
for policy gradients. And it's based on the A2C architecture. Thus the proposed algorithm is 
termed the PGA (PPO-GAE-A2C) algorithm. The general architecture of PGA is shown in 
Fig. 3. 

5.1 Proximal Policy Optimization 
PPO inherited the ideas of trust region policy optimization (TRPO) [34] by introducing the 
following maximization problem w.r.t. surrogated objective function: 
 
                                             𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝜃𝜃
𝛦𝛦�𝑡𝑡[ 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)

𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)
𝐴̂𝐴𝑡𝑡] 

                                             𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝐸𝐸�𝑡𝑡[𝐾𝐾𝐾𝐾[𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(∙ |𝑠𝑠𝑡𝑡),𝜋𝜋𝜃𝜃(∙ |𝑠𝑠𝑡𝑡)]] ≤ 𝛿𝛿                      (14) 
 
where ( | )t ta sθπ  denotes the current policy, while ( | )old t ta sθπ  means the policy before 
update, i.e., the old policy. As in (14), trajectories under the old policy can be used to optimize 
the current policy as long as the average KL divergence between the distributions of their 
parameters is smaller than the constraint value δ . This mechanism indeed transforms the on-
policy method into the off-policy one, and more importantly, enables the policy-based RL 
algorithm to reuse the samples. In addition, the monotonic improvement of the policy can be 
guaranteed by using the surrogate objective function in (14). 
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Fig. 3. Architecture of PGA algorithm 

 
However, the high complexity of calculating the average KL divergence between two 

distributions reduces the training speed and limits the size of state and action spaces. 
Concerning these issues, a clipped surrogate objective is designed in PPO algorithm: 

𝐿𝐿𝑃𝑃𝑃𝑃(𝜃𝜃) = 𝔼𝔼�𝑡𝑡[min (𝑟𝑟𝑡𝑡(𝜃𝜃)𝐴̂𝐴𝑡𝑡, 𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟𝑡𝑡(𝜃𝜃), 1 − 𝜀𝜀, 1 + 𝜀𝜀)𝐴̂𝐴𝑡𝑡)]            (15) 
where 𝑟𝑟𝑡𝑡(𝜃𝜃) is the probability ratio: 

           𝑟𝑟𝑡𝑡(𝜃𝜃) = 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)
𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)

                                                       (16) 
The clip function in the second term of (15) restricts the ratio within boundary of [1 − 𝜀𝜀, 1 +

𝜀𝜀], where  𝜀𝜀 is a hyperparameter (e.g., 0.2ε = ). And the gradient estimation of certain value 
function can be obtained by differentiating the clipped surrogate objective (15). Using this 
simple clipping trick, PPO algorithm approximately enforces KL constraint without 
complicating the computation of the gradient. This implies that PPO attains TRPO's data 
efficiency and reliable performance, but it is much simpler to implement. 

5.2 Generalized Advantage Estimation 
The essential improvement of A2C algorithm to the classic gradient-based algorithm relies on 
the usage of certain value function such as the advantage function (5) instead of the 
accumulated return (1) to achieve the estimation of policy gradient as specified in (8). 
Consequently, the data efficiency is improved since the data are “remembered” by the value 
function in an efficient way to be reused, and the variance is also reduced. However, the 
theoretical form of the value function can not be directly used, any practical approximation of 
the value functions will introduce certain bias, which may cause the failure of algorithm 
convergence, or the convergence to a poor solution that is not even a local optimum. Therefore, 
the tradeoff between reducing the variance and introducing the bias must be carefully 
considered so as to achieve a RL model with better performance. Fortunately, GAE [15] 
technique provides an elegant solution to such problem. 

To achieve an appropriate estimation of advantage function, the temporal difference (TD) 
method is utilized. Let 𝑉𝑉 be the approximation of state value function 𝑉𝑉𝜋𝜋,𝛾𝛾, and define the TD 
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residual 𝛿𝛿𝑡𝑡𝑉𝑉 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾𝛾𝛾(𝑠𝑠𝑡𝑡+1)− 𝑉𝑉(𝑠𝑠𝑡𝑡). It is possible to show when the approximation 𝑉𝑉  is 
exactly the state value function, i.e., 𝑉𝑉 = 𝑉𝑉𝜋𝜋,𝛾𝛾, 

𝔼𝔼�𝑠𝑠𝑡𝑡+1�𝛿𝛿𝑡𝑡
𝑉𝑉𝜋𝜋,𝛾𝛾� = 𝔼𝔼�𝑠𝑠𝑡𝑡+1[𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑉𝑉𝜋𝜋,𝛾𝛾(𝑠𝑠𝑡𝑡+1)− 𝑉𝑉𝜋𝜋,𝛾𝛾(𝑠𝑠𝑡𝑡)] 

= 𝑄𝑄𝜋𝜋,𝛾𝛾(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)− 𝑉𝑉𝜋𝜋,𝛾𝛾(𝑠𝑠𝑡𝑡)                                                     (17) 
= 𝐴𝐴𝜋𝜋,𝛾𝛾(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)                                                                         

(17) indicates that the TD-residual 𝛿𝛿𝑡𝑡𝑉𝑉
𝜋𝜋,𝛾𝛾is an unbiased estimator of the advantage function 

𝐴𝐴𝜋𝜋,𝛾𝛾. This fact has been revealed as in (7). However, the utilization of the approximation 𝑉𝑉  
yields certain bias. Meanwhile, 𝛿𝛿𝑡𝑡𝑉𝑉 can be considered as a one-step estimator of advantage 
function, it can be possibly extended into multi-steps formulation as follows: 

𝐴̂𝐴𝑡𝑡
(1) = 𝛿𝛿𝑡𝑡𝑉𝑉                                                                           
𝐴̂𝐴𝑡𝑡

(2) = 𝛿𝛿𝑡𝑡𝑉𝑉 + 𝛾𝛾𝛿𝛿𝑡𝑡+1𝑉𝑉  
⋯                                                                        (18) 

𝐴̂𝐴𝑡𝑡
(𝑘𝑘) = ∑ 𝛾𝛾𝑙𝑙𝛿𝛿𝑡𝑡+1𝑉𝑉𝑘𝑘−1

𝑙𝑙=0                                                            
Inspired by the TD(𝜆𝜆 ) algorithm [6], exponentially-weighted average of these 𝑘𝑘 -steps 

estimators (18) forms the generalized advantage estimator (GAE): 
𝐴̂𝐴𝑡𝑡
𝐺𝐺𝐺𝐺𝐺𝐺(𝛾𝛾,𝜆𝜆) ≜ (1 − 𝜆𝜆)(𝐴̂𝐴𝑡𝑡

(1) + 𝜆𝜆𝐴̂𝐴𝑡𝑡
(2) + 𝜆𝜆2𝐴̂𝐴𝑡𝑡

(3) + ⋯ ) 
= (1 − 𝜆𝜆)�𝛿𝛿𝑡𝑡𝑉𝑉

𝜋𝜋,𝛾𝛾 + 𝜆𝜆�𝛿𝛿𝑡𝑡𝑉𝑉
𝜋𝜋,𝛾𝛾 + 𝛾𝛾𝛿𝛿𝑡𝑡+1𝑉𝑉𝜋𝜋,𝛾𝛾� + ⋯�                       (19) 

= ∑ (𝛾𝛾𝛾𝛾)𝑘𝑘𝛿𝛿𝑡𝑡+𝑘𝑘𝑉𝑉𝜋𝜋,𝛾𝛾∞
𝑘𝑘=0                                                                      

where 𝜆𝜆𝜆𝜆[0,1] is the primary hyperparameter accounted for the tradeoff between bias and 
variance. Optimal ranges of 𝛾𝛾 and 𝜆𝜆 are verified to be [0.96,0.99] and [0.92,0.99] respectively 
through a bunch of experiments [15]. 

5.3 Model Structure and Algorithm 
Combing the aforementioned PPO and GAE techniques, in this paper, a novel PGA learning 
algorithm is proposed in accordance with the specified TST problem. Fig. 3 presents its 
general architechture. 

This model contains the actor module and the critic module. Especially, the actor module 
consists two policy networks, which are referred to as the current policy network and old 
policy network, respectively. The inputs of these two networks are the same vectors containing 
state information, and their outputs are the action probability distributions representing the 
current policy θπ  and old policy oldθπ , where θ  and oldθ  are the relevant model parameters. 
In the critic module, the value network receives the state information and the output is the 
predicted state value function, where ϕ  represents the model parameters. Artificial Neural 
Network (ANN) is used to realize these three networks. Consider the fact that the dimension 
of the state and action space of the proposed TST problem is not large, we only use a single 
fully-connected hidden layer in ANNs to avoid overfitting. 

The objective function of current policy network is defined according to (15) (16) (19), 
while the old policy network doesn't need to be trained, it periodically duplicates the 
parameters from the current policy network. The learning objective of value network is defined 
as follows: 

𝑎𝑎𝑎𝑎𝑎𝑎min
𝜑𝜑

∥ ∑ 𝛾𝛾𝑘𝑘𝑟𝑟𝑡𝑡+𝑘𝑘 − 𝑉𝑉𝜑𝜑(𝑠𝑠𝑡𝑡)𝐵𝐵−𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵
𝑘𝑘=0 ∥2                                 (20) 

where 𝐵𝐵 is number of samples in a minibatch, ∑ 𝛾𝛾𝑘𝑘𝑟𝑟𝑡𝑡+𝑘𝑘𝐵𝐵−𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵
𝑘𝑘=0 is the discounted sum of 

rewards, 𝑉𝑉𝜑𝜑(𝑠𝑠𝑡𝑡) is the predicted state value function. The predicted state value function will 
gradually approximate the true state value function by the optimization procedure. The general 
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architecture of PGA is quite straightforward and feasible to achieve policy evaluation and 
policy improvement. 
Algorithm 1 PGA algorithm for traffic signal timing 
Input: Parameters of PGA model in Table 2 
Output: ( | )t ta sθπ , ( )tV sϕ  

Notations: N :maximum number of training episodes, LENEP : number of steps in each 
episode, B : number of samples in a minibatch 
1. Initialize intersection environment and traffic signal timing scheme 
2. Initialize parameters of policy networks and value network 
3. for 1,episode N=  do: 
4. Initialize environment and collect initial state ts  
5. for 1, LENtimestep EP=  do: 
6. Run old policy ( | )old t ta sθπ  to sample trajectories 
7. If number of trajectories B≥ : 
8. Compute generalized advantage estimation according to (19) 
9. Optimize current policy network with K  epochs according to (15) (16) 
10. Optimize value network with K epochs according to (20) 
11. Duplicate parameters from current policy network to old policy network 
12. end for 
13. end for 

 
Pseudo-code of PGA algorithm is given in Algorithm 1, the basic procedures are 

summarized as follows. In the beginning, traffic timing scheme and network parameters are 
randomly initialized. The initial state from the intersection is collected as the input of the old 
policy network in order to sample different minibatch size trajectories. Then the generalized 
advantage estimation is performed according to output of value network and the cumulative 
rewards, meanwhile, the parameters of both current policy network and value network are 
optimized for K  epochs in the gradient descent manner w.r.t. (15), (16) and (20). 
Consequently, the parameters of current policy network are duplicated to the old policy 
network. 

6. Experiment 

6.1 Experiment Settings and Datasets 
Experiments are conducted on traffic simulation platform SUMO (version 0.32.0). Traffic 
signal timing algorithms are developed on Python integrated development environment 
PyCharm (version 2018.2.1). The interactions between SUMO and the proposed algorithm are 
conducted through a Python module TraCI (Traffic Control Interface) in SUMO. TraCI 
retrieves the traffic information from the simulated environment and transfers them to the 
algorithm, it also performs signal timing schemes according to results provided by the TST 
models. All simulations were executed on a Windows desktop computer with an Intel CPU 
(i7-4720HQ, @2.60GHz), 16 GB RAM and a GeForce GTX 960M GPU. 

In the experiments, TST models are built upon a real-world intersection of Shanyin Road 
and Shixin Road, Hangzhou, China. There are 20 lanes at the intersection, and its satellite map 
is shown in Fig. 4. Actual phase sequence of this intersection is illustrated in Table 1. In 
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practice, every phase is followed by a 3 seconds yellow light duration (including the red light 
clearance). 
 

 
Fig. 4. Satellite map of intersection of Shanyin Road and Shixin Road in Hangzhou 

 
Table 1. Phase sequence of signal timing scheme 

Phase1 Phase2 Phase3 Phase3 

    
 
Field traffic data used in simulations are collected from surveillance cameras at the 

intersection. Fig. 5 illustrates the traffic flow data during July23-27, 2018, which are sampled 
every 5 minutes.  Notice that the data in the blue and red boxes represent traffic status in 
regular periods (10:30-13:30) and rush hours (15:00-18:00) respectively. To test the 
performance and adaptability of the proposed signal timing strategy, experiments are 
conducted with respect to both regular periods and rush hours. The traffic flow data to initialize 
the simulation and to achieve the optimized timing schemes are those of July 25, 2018, while 
the data for testing are those of July 24, 2018. 

 

 
Fig. 5. Traffic flow of intersection of Shanyin Road and Shixin Road, July 23-27, 2018. The blue and 
red boxes contain traffic data in medium traffic density (10:30-13:30) and high traffic density (15:00-

18:00) scenarios respectively 
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6.2 Evaluation Methods and Metrics 
To validate the performance of PGA traffic signal timing scheme, comparative experiments 
are conducted according to the following state-of-art and classical RL-based TST methods. 
 3DQN[25]: Dueling double deep Q-network TST model adopts DTSE as traffic state 

representation, and its available actions indicate time intervals to be allocated for the next 
phase.  

 nNQ[35]: Asynchronous n-step Q-learning TST model uses a vector composed of four 
traffic statistics for state representation, and its actions represent combinations of green 
signals for some non-conflicting movements in the following phase.  

 DDQN[10]: Double deep Q-network TST model uses DTSE as well, and actions in this 
model are designed to determine the following signal phase. 
To verify the functionality of PPO and GAE techniques, two simplified models, namely the 

PA model and GA model, are derived by removing GAE and PPO from PGA respectively. 
Also, to verify that the TST model with simplified state representation shows no performance 
degradation than those with DTSE, a model called PGA-DTSE is also developed, whose main 
components are identical with PGA except the state.  

For the concerned traffic signal timing problem, the primary objective is to improve traffic 
efficiency by reducing queue length. So from field-applications perspective, the average queue 
length, average travel time and average vehicle delay are all chosen to be the evaluation 
metrics.  

Parameters of all models are tuned separately to achieve the best performance, which are 
listed in Table 2-3 respectively. In all experiments, one episode consists of 64 consecutive 
signal cycles (steps). As shown in Table 2-3, TST models need different numbers of training 
episodes to converge, PGA converges many times faster than nNQ and DDQN. PGA-DTSE 
needs twice the number of training iterations than PGA, and it takes longer time to execute a 
step, because the size of its state is dozens of times larger than the latter’s. This fact explicitly 
indicates the proposed state can significantly reduce the training time.  

 
Table 2. Parameters of PGA, PA, GA and PGA-DTSE traffic signal timing model 

Parameter PGA PA GA PGA-DTSE 
Discount factor γ  0.99 0.99 0.99 0.99 

Actor learning rate 0.0001 0.0001 0.0001 0.0001 

Critic learning rate 0.0002 0.0002 0.0002 0.0002 

GAE parameter λ  0.96 -- 0.96 0.96 

Clipping Parameter ε  0.2 0.2 -- 0.2 

Minibatch size B  32 32 32 32 

Convergence episode 100 150 150 200 

Number of epochs per episode 64 64 64 64 

According to the definition of PGA’s action in Section 4.2, during each step, duraion of one 
of the phases maybe shorten or prolonged by a fixed range, and that value is important to the 
model’s performance. We record this value as δ , and comparison experiments are conducted 
to search the optimal solution. In real intersections, after the corresponding traffic light turning 
to green, it takes about 2-3 seconds for a vehicle to pass the stop line. So it makes no sense if 
δ is smaller than 2-3 seconds. At the same time, it’s not secure to apply the TST scheme in 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 11, November 2020                4281 

field application if δ  is too large, the adjustment of traffic light timing should be smooth. So 
we choose 3, 5, 7, and 9 as candidate value for δ . Results of experiments in medium and high 
traffic density scenarios are shown in Fig. 6. Data in the figures are average values of 15 
independent testing experiments. 
 

Table 3. Parameters of 3DQN, nNQ and DDQN traffic signal timing model 
Parameter 3DQN nNQ DDQN 

Discount factor γ  0.99 0.99 0.90 

Learning rateα  0.0001 0.0001 0.0001 

Starting ε  1 1 1 

Ending ε  0.01 0.0001 0.01 

Minibatch size B  32 16 64 

Replay memory size 10000 10000 10000 

Convergence episode 150 1000 500 

Number of epochs per episode 64 64 64 
There are no explicit differences when δ  is 3, 5, and 7. It demonstrates that PGA algorithm 

is qualified to explore optimal TST scheme, and not sensitive to the value of phase duration 
adjustments in this range. But when δ = 9, the performance deteriorates and obvious vibrations 
happens. This means 9 seconds is too large, and it’s hard to search an optimal solution in this 
situation. It’s not wise to set δ  larger than 9. According to the above experiments, δ  is set to 
5 in all simulations of this paper. 
 

   
(a) Average queue length                 (b) Average travel time              (c) Average vehivle delay 

Fig. 6. Performance comparisons of different value of phase duration adjustment (recorded as δ  ) in 
medium and high traffic density scenario  

6.3 Results and Discussions 
Results of comparative experiments in medium and high traffic density scenarios are shown 
in Table 4-5 respectively. The results are obtained by running 200 episodes on the trained 
models, according to the testing data. All data presented are averaged over 15 independent 
runs, and numbers after ' ± ' are standard deviations. 

It can be seen that PGA performs better than all others from all aspects. The simplified 
forms PA and GA are slightly weaker than PGA, but significantly better than other 
comparative models. This fact is in accordance with the theoretical discussions provided in 
Section 5, and it indicates that both PPO and GAE technique are essential for the proposed 
model. Their joint effect ensures the improvement of performance and adaptability of the 
signal timing scheme. 
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Testing results of PGA-DTSE are inferior to PGA, PA and GA, but better than the others. 
Particularly, in high traffic density scenario, the standard deviations of its metrics are pretty 
large, and its average vehicle delay is 87.79% higher than PGA. These outcomes demonstrate 
that the state consists of primitive traffic information leads no performance degradation. And 
the model with DTSE has weak adaptability in intersections with massive traffic volume. 

The 3DQN model exhibits better performance than DDQN and nNQ. But compared with it, 
PGA reduces 12.6%, 6.7% and 41.5% of average queue length, average travel time and 
average vehicle delay in medium traffic density, and 27.4%, 8.1% and 49.5% in high traffic 
density. 

 
Table 4. Testing results of different TST models in medium traffic density scenario by 15 independent 

runs. Numbers after ' ± ' are standard deviations of metrics 
TST models Average queue length(pcu) Average travel time(s) Average vehicle delay(s) 

PGA 26.81 ± 1.37 122.00 ± 1.44 23.07 ± 1.41 

PA 27.13 ± 1.91 122.59 ± 2.23 27.70 ± 1.98 

GA 28.10 ± 1.67 123.45 ± 1.85 24.16 ± 1.50 

PGA-DTSE 30.35 ± 2.44 126.76 ± 5.30 39.22 ± 1.73 

3DQN 30.68 ± 4.95 130.86 ± 21.82 39.44 ± 21.84 

DDQN 43.03 ± 3.52 138.52 ± 5.17 38.52 ± 4.48 

nNQ 44.23 ± 1.05 147.47 ± 0.37 60.59 ± 0.37 
 

Table 5. Testing results of different TST models in high traffic density scenario by 15 independent 
runs. Numbers after ' ± ' are standard deviations of metrics 

TST models Average queue length(pcu) Average travel time(s) Average vehicle delay(s) 

PGA 28.23 ± 0.71 122.45 ± 0.80 23.52 ± 0.76 

PA 29.24 ± 0.91 123.47 ± 0.95 24.47 ± 0.88 

GA 32.47 ± 2.42 128.15 ± 3.51 27.61 ± 2.48 

PGA-DTSE 35.92 ± 8.49 130.01 ± 9.98 44.17 ± 9.98 

3DQN 38.87 ± 5.86 133.28 ± 13.60 46.61 ± 13.60 

DDQN 48.07 ± 10.66 146.36 ± 16.21 44.86 ± 14.47 

nNQ 44.30 ± 0.32 163.90 ± 1.65 77.03 ± 1.65 
 
It is worth mentioning that the adaptability of an algorithm naturally exhibits itself in high 

traffic density case. This is because it's challenging for the agent to adapt and learn smarter 
policy when the environment is continuously changing, i.e., there are more occurrences of the 
dramatic change of traffic flow in the high traffic density scenario. PGA shows prominent 
stability and generalization ability in high traffic density scenario. Compared to medium traffic 
density scenario, its performance metrics barely change and have smaller standard deviations 
than the others. In contrast, the performances of 3DQN and DDQN vibrate seriously. The 
trained nNQ model exhibits high level stability in both scenarios, but it has the longest average 
travel time and average vehicle delay in all experiments. 
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Overall comparisons of TST models under medium and high traffic density scenarios are 

shown in Fig. 7-8 respectively. It can be seen that PGA achieves obvious advantage over all 
other models. PA and GA present closer metrics to the proposed model, but small vibrations 
can be found in their testing, especially in GA's high traffic volume testing. In medium traffic 
scenario, the performance of PGA-DTSE is closer to 3DQN. But it fluctuates badly when 
traffic volume around the intersection is large. 

 

 
(a) Average queue length 

 
(b) Average travel time 
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(c) Average vehicle delay 

Fig. 7. Overall performance comparisons of adaptive signal timing models in medium traffic 
density scenario 

 
(a) Average queue length 

 
(b) Average travel time 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 11, November 2020                4285 

 
(c)Average vehicle delay 

 
Fig. 8. Overall performance comparisons of adaptive signal timing models in high traffic density 

scenario 
 

What stands out about 3DQN is it needs about 50 episodes to re-adapt new environment in 
the beginning of every testing, then it converges to a relatively good and stable status. As 
shown in Fig. 7-8, performance of nNQ is consistent with data in Table 4-5, which indicates 
good stability and poor performance. Although DDQN outperforms nNQ in terms of average 
metrics, but what is shown in Fig. 7-8 demonstrates that it has the worst adaptability and 
stability than the others. 

To validate effectiveness of the new reward function proposed in the article, experiments 
are also conducted for the same PGA model with different reward functions. The results are 
provided in Table 6. In the “Reward definition” column, “Modified queue length” denotes the 
new kind of reward (13) employed in our model, “Queue length” denotes the direct usage of 
the average value of queue length at the intersection as the reward. Evaluation metrics of the 
trained models are recorded for both scenarios. It can be seen that the new reward function 
ensures the algorithm outperforms the one with traditional reward in all experiments. 
Especially, there is a significant improvement under high traffic density. Traffic light timing 
scheme with the modified reward function reduces 14.7% of average queue length, and 33.0% 
of average vehicle delay than the one with traditional reward function. 
 
Table 6. Evaluation metrics of models with different reward functions, numbers after ' ± ' are standard 

deviations of metrics 
Reward 
definition 

Traffic 
density 

Average queue 
length(pcu) 

Average travel 
time(s) 

Average vehicle 
delay(s) 

Convergence 
episode 

Modified 
queue length Medium 26.81 ± 1.37 122.00 ± 1.44 23.07 ± 1.41 100 

Queue length Medium 28.13 ± 2.13 125.31 ± 1.89 27.65 ± 1.77 230 
Modified 
queue length High 28.23 ± 0.71 122.45 ± 0.80 23.52 ± 0.76 100 

Queue length High 33.13 ± 1.14 128.37 ± 1.91 35.11 ± 1.56 250 
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Another merit of the new reward function is regarding the convergence speed. According 
to the definition of the reward function in (13), it encourages the agent to optimize the policy 
on the basis of the effectiveness that achieved in the last episode. This mechanism efficiently 
decreases the model’s training time. As exhibited in Table 6, it takes 100 episodes for the 
model with the new reward to achieve convergence, but it takes more than twice episodes to 
accomplish the training process with the traditional reward. 

7. Conclusion 
In this article, a RL-based adaptive traffic signal timing scheme PGA is proposed. The 

model is based on actor-critic architecture and it contains certain advanced RL techniques such 
as PPO and GAE. These techniques theoretically improve the effectiveness and efficiency of 
the relevant learning algorithm. Particularly, PPO improves sample efficiency in a brief and 
reliable implementation way, and GAE effectively reduces the policy gradients variance. 

Meanwhile, considering the practical requirement of traffic signal timing problem, a new 
kind of reward function is defined, and simplifications of the state and action space 
representations are also introduced. The resulting signal timing plan significantly improves the 
general performances of traffic control systems compared with the existing ones such as 
3DQN and DDQN-based schemes, also, it satisfies the requirements of feasibility, safety and 
adaptability in field applications. The test results are provided through real field traffic data-
based simulations. To further refine the aforementioned scheme, pedestrians and non-
motorized vehicles will be taken into consideration.  
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