• 제목/요약/키워드: Time-varying Failure

검색결과 70건 처리시간 0.024초

Adaptive Actuator Failure Compensation Designs for Linear Systems

  • Chen, Shuhao;Tao, Gang;Joshi, Suresh M.
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권1호
    • /
    • pp.1-14
    • /
    • 2004
  • This paper surveys some existing direct adaptive feedback control schemes for linear time-invariant systems with actuator failures characterized by the failure pattern that some inputs are stuck at some unknown fixed or varying values at unknown time instants, and applications of those schemes to aircraft flight control system models. Controller structures, plant-model matching conditions, and adaptive laws to update controller parameters are investigated for the following cases for continuous-time systems: state tracking using state feed-back, output tracking using state feedback, and output tracking using output feedback. In addition, a discrete-time output tracking design using output feedback is presented. Robustness of this design with respect to unmodeled dynamics and disturbances is addressed using a modified robust adaptive law.

동적시스템의 신뢰도 평가를 위한 베이지안망의 적용 (An Application of Bayesian Network for Dynamic System Reliability Assessment)

  • 안선응;구정모
    • 산업경영시스템학회지
    • /
    • 제27권2호
    • /
    • pp.93-101
    • /
    • 2004
  • This paper is intended to assess a dynamic system reliability. Bayesian networks, however, have difficulties in their application for assessing the system reliability especially when the system consists of dependent components and the probability of failure of each component varies over time. Hence, we suggest a method for resolving the difficulties by considering a hoist system composed of two wires. Firstly, we explain the method of calculating the failure probability of the system components. Secondly, we show how to calculate the failure probability of the system for two cases that failure probability of each wire is constant and varying in time, respectively. finally, based on the calculated failure probability of the system, we infer the probability that two interesting events occur.

In-situ monitoring and reliability analysis of an embankment slope with soil variability

  • Bai, Tao;Yang, Han;Chen, Xiaobing;Zhang, Shoucheng;Jin, Yuanshang
    • Geomechanics and Engineering
    • /
    • 제23권3호
    • /
    • pp.261-273
    • /
    • 2020
  • This paper presents an efficient method utilizing user-defined computer functional codes to determine the reliability of an embankment slope with spatially varying soil properties in real time. The soils' mechanical properties varied with the soil layers that had different degrees of compaction and moisture content levels. The Latin Hypercube Sampling (LHS) for the degree of compaction and Kriging simulation of moisture content variation were adopted and programmed to predict their spatial distributions, respectively, that were subsequently used to characterize the spatial distribution of the soil shear strengths. The shear strength parameters were then integrated into the Geostudio command file to determine the safety factor of the embankment slope. An explicit metamodal for the performance function, using the Kriging method, was established and coded to efficiently compute the failure probability of slope with varying moisture contents. Sensitivity analysis showed that the proposed method significantly reduced the computational time compared to Monte Carlo simulation. About 300 times LHS Geostudio computations were needed to optimize precision and efficiency in determining the failure probability. The results also revealed that an embankment slope is prone to high failure risk if the degree of compaction is low and the moisture content is high.

내장형 AVTMR 시스템의 하드웨어 및 소프트웨어 신뢰성 분석 (Hardware and Software Dependability Analysis of Embedded AVTMR(All Voting Triple Modular Redundancy) System)

  • 김현기
    • 한국통신학회논문지
    • /
    • 제34권7B호
    • /
    • pp.744-750
    • /
    • 2009
  • 본 논문에서는 신뢰성을 명가하는 데 있어서 소프트웨어 및 하드웨어 측면을 고려한 통합된 마코브 모델링(Markov modeling)으로 AVTMR(AlI Voting Triple Modular Redundancy) 시스템의 신뢰성을 분석한다. 본 시스템의 모델링은 하드웨어의 경우에 고장율이 시불변 특성을 가지며, 소프트웨어 경우에는 시 가변 특성으로 모델링되어 AVTMR 시스템과 단일 시스템에 대한 신뢰성 비교를 한다. 특히, 소프트웨어적인 특성은 G-O/NHPP 기법을 이용하여 분석이 되며, AVTMR 시스템의 전체적인 특성을 소프트웨어 및 하드웨어적인 관점에서 고장율 따른 특성을 이해할 수 있게 된다. 평가된 AVTMR 은 엄베디드 통신 시스템, 항공기 등의 결함 허용 시스댐에 요구되는 스팩에 맞도록 설계를 하기 위한 기반을 제시한다.

Making Decision of the Maintenance Priority of Power Distribution System using Time Varying Failure Rate and Interruption Cost

  • Chu, Cheol-Min;Kim, Jae-Chul;Yun, Sang-Yun
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권1호
    • /
    • pp.43-48
    • /
    • 2009
  • The purpose of the this paper is to make decision of the maintenance priority of power distribution system using Time-Varying Failure Rate(TVFR) with interruption cost. This paper emphasizes the practical use of the reliability indices and interruption cost. To make a decision of maintenance priority on power distribution system equipment, the quantification of the reliability level should be represented as a cost. In this paper, the TVFR of power distribution system equipment applied in this paper utilizes analytic method to use the historical data of KEPCO. From this result, the sensitivity analysis on TVFR of equipment was done for the priority, which represents that high priority of the equipment has more effect on system reliability, such as SAIDI or SAIFI, than other equipment. By this priority, the investment plan is established. In this result, customer interruption cost(CIC) could be extracted, and CIC is used as weighting factor to consider a importance of customer. After that, the result calculated the proposal method in this paper is compared with other priority method, such as lifetime, failure rate or only sensitivity.

Pooling shrinkage estimator of reliability for exponential failure model using the sampling plan (n, C, T)

  • Al-Hemyari, Z.A.;Jehel, A.K.
    • International Journal of Reliability and Applications
    • /
    • 제12권1호
    • /
    • pp.61-77
    • /
    • 2011
  • One of the most important problems in the estimation of the parameter of the failure model, is the cost of experimental sampling units, which can be reduced by using any prior information available about ${\theta}$, and devising a two-stage pooling shrunken estimation procedure. We have proposed an estimator of the reliability function (R(t)) of the exponential model using two-stage time censored data when a prior value about the unknown parameter (${\theta}$) is available from the past. To compare the performance of the proposed estimator with the classical estimator, computer intensive calculations for bias, mean squared error, relative efficiency, expected sample size and percentage of the overall sample size saved expressions, were done for varying the constants involved in the proposed estimator (${\tilde{R}}$(t)).

  • PDF

배전기기 고장률 추출에 관한 연구 (A Study on Failure Rate Extraction of Power Distribution System Equipment)

  • 문종필;김재철;이희태;추철민;안재민
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.366-368
    • /
    • 2007
  • In this paper, the Time-varying Failure Rate (TFR) of power distribution system equipment is extracted from the recorded failure data of Korea Electric Power Corporation (KEPCO). For TFR extraction, it is used that the fault data accumulated by KEPCO during 10 years. The TFR is approximated to bathtub curve using the exponential (random failure) and Weibull (aging failure) distribution function. In addition, Kaplan-Meier estimation is applied to TFR extraction because of incomplete failure data of KEPCO. Finally, Probability plot and regression analysis is applied. It is presented that the extracted TFR is more effective and useful than Mean Failure Rate (MFR) through the comparison between TFR and MFR.

  • PDF

A Particle Filtering Approach for On-Line Failure Prognosis in a Planetary Carrier Plate

  • Orchard, Marcos E.;Vachtsevanos, George J.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권4호
    • /
    • pp.221-227
    • /
    • 2007
  • This paper introduces an on-line particle-filtering-based framework for failure prognosis in nonlinear, non-Gaussian systems. This framework uses a nonlinear state-space model of the plant(with unknown time-varying parameters) and a particle filtering(PF) algorithm to estimate the probability density function(pdf) of the state in real-time. The state pdf estimate is then used to predict the evolution in time of the fault indicator, obtaining as a result the pdf of the remaining useful life(RUL) for the faulty subsystem. This approach provides information about the precision and accuracy of long-term predictions, RUL expectations, and 95% confidence intervals for the condition under study. Data from a seeded fault test for a UH-60 planetary carrier plate are used to validate the proposed methodology.

심실의 부하감소 측면에서 좌심실 보조장치의 최적 치료시기 예측을 위한 시뮬레이션 연구 (Prediction of Pumping Efficacy of Left Ventricular Assist Device according to the Severity of Heart Failure: Simulation Study)

  • 김은혜;임기무
    • 한국기계가공학회지
    • /
    • 제12권4호
    • /
    • pp.22-28
    • /
    • 2013
  • It is important to begin left ventricular assist device (LVAD) treatment at appropriate time for heart failure patients who expect cardiac recovery after the therapy. In order to predict the optimal timing of LVAD implantation, we predicted pumping efficacy of LVAD according to the severity of heart failure theoretically. We used LVAD-implanted cardiovascular system model which consist of 8 Windkessel compartments for the simulation study. The time-varying compliance theory was used to simulate ventricular pumping function in the model. The ventricular systolic dysfunction was implemented by increasing the end-systolic ventricular compliance. Using the mathematical model, we predicted cardiac responses such as left ventricular peak pressure, cardiac output, ejection fraction, and stroke work according to the severity of ventricular systolic dysfunction under the treatments of continuous and pulsatile LVAD. Left ventricular peak pressure, which indicates the ventricular loading condition, decreased maximally at the 1st level heart-failure under pulsatile LVAD therapy and 2nd level heart-failure under continuous LVAD therapy. We conclude that optimal timing for pulsatile LVAD treatment is 1st level heart-failure and for continuous LVAD treatment is 2nd level heart-failure when considering LVAD treatment as "bridge to recovery".

Numerical simulation on the coupled chemo-mechanical damage of underground concrete pipe

  • Xiang-nan Li;Xiao-bao Zuo;Yu-xiao Zou;Yu-juan Tang
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.779-791
    • /
    • 2023
  • Long-termly used in water supply, an underground concrete pipe is easily subjected to the coupled action of pressure loading and flowing water, which can cause the chemo-mechanical damage of the pipe, resulting in its premature failure and lifetime reduction. Based on the leaching characteristics and damage mechanism of concrete pipe, this paper proposes a coupled chemo-mechanical damage and failure model of underground concrete pipe for water supply, including a calcium leaching model, mechanical damage equation and a failure criterion. By using the model, a numerical simulation is performed to analyze the failure process of underground concrete pipe, such as the time-varying calcium concentration in concrete, the thickness variation of pipe wall, the evolution of chemo-mechanical damage, the distribution of concrete stress on the pipe and the lifetime of the pipe. Results show that, the failure of the pipe is a coupled chemo-mechanical damage process companied with calcium leaching. During its damage and failure, the concentrations of calcium phase in concrete decrease obviously with the time, and it can cause an increase in the chemo-mechanical damage of the pipe, while the leaching and abrasion induced by flowing water can lead to the boundary movement and wall thickness reduction of the pipe, and it results in the stress redistribution on the pipe section, a premature failure and lifetime reduction of the pipe.