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Abstract. One of the most important problems in the estimation of the parameter of 
the failure model, is the cost of experimental sampling units, which can be reduced 
by using any prior information available about ,θ  and devising a two-stage pooling 
shrunken estimation procedure. We have proposed an estimator of the reliability 
function ( )(tR ) of the exponential model using two-stage time censored data when 
a prior value about the unknown parameter (θ ) is available from the past. To 
compare the performance of the proposed estimator with the classical estimator, 
computer intensive calculations for bias, mean squared error, relative efficiency, 
expected sample size and percentage of the overall sample size saved expressions, 
were done for varying the constants involved in the proposed estimator ( )(~ tR ).  
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1. INTRODUCTION 
 

1.1 The model and )(tR  
  
The exponential failure model is one of the most significant and widely used models 

in life testing and survival problems and has been used very effectively for analyzing data 
particularly when the data is censored which is very common in most life testing 
experiments (Gnedenko,  Balyayev, & Solovyev, 1969; Sinha, 1986). Reliability theory 
and reliability engineering make extensive use of the exponential failure model. Another 
important topic in reliability engineering is the parameter estimation when there are items 
that have been tested and have not failed (censored data).  
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The reliability of a given system (or component) for a given time has been defined as 
the probability that the system (or component) functions longer than the time of duration t, 
and given by, 
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                              (1.1) 

where θ  gives the average or mean life of the item under study and )(tFθ  is the  
distribution function of failure time T following the exponential model. Reliability is 
obviously of great importance in life problems. The classical estimator θ̂  of θ  and hence 
of )(tR  can easily be obtained without any complicated mathematical aid.  

 
1.2 Incorporating a guess value 

 
Suppose observations are available from a probability distribution function ),(tFθ  

where the functional form of  (.)θF  is known and θ   is an unknown parameter. Further, 
suppose that the experimenter has prior information regarding the value of θ  due to past 
experiences. In certain situations however, the prior information is available only in the 
form of an initial guess value (natural origin) oθ  of ,θ  then this guess may be utilized in 
the new estimation problem. For example; a bulb producer may know that the average life 
of his product may be close to 1000 hours.  Here we may take .10000 =θ  According to 
Thompson (1968) oθ  is a ‘natural origin’ and such natural origins may arise for any one 
of number of reasons, e.g., we are estimating θ  and:  

(i) the prior value ( oθ ) of θ  in many practical problems exists. 
         (ii)  we believe 0θ   is close to the true value of ,θ  or 

(iii) we are cautious that 0θ  may be near the true value of ,θ   i.e., something 
undesirable happens if  ,0 θθ ≅  and we are not aware of it. 

In such a situation it is natural to utilize oθ  in the estimation of .θ  The method of 
constructing an estimator of θ  that incorporates oθ  leads to what is known as a shrunken 
estimator to improve the estimation procedure, i.e., reducing the MSE of the new 
estimator or giving a saving in sample size. 
A standard problem in life testing deals with estimation of the parameter θ  and )(tR  on 
the basis of less time and minimizing the cost of experimentation. The cost of 
experimentation can be achieved by using any prior information available about θ  and 
devising a two-stage pooling shrunken estimation procedure.  
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2. TPSE, BACKGROUND AND THE AIM 
 
As noted earlier the cost of experimentation of getting an estimator of the 

parameter θ  of the failure model can be reduced by using any prior information 
available about θ  and devising a two-stage pooling shrunken procedure in which it 
is possible to obtain an estimator from a small first stage sample and additional 
second stage sample is required only if this estimator is not reliable (see Katti 
(1962)). A two-stage pooling shrunken estimator (TPSE) of θ   is defined as 
follows. Let ,,...,2,1, 11 niT i =  be a random sample of size nn <1  from the 

exponential distribution and 1̂θ  to be a good estimator of θ based on 1n  
observations. Construct a pretest region R  in the space ofθ , based on the prior 
value Oθ  and an appropriate criterion. If ,1̂ R∈θ  use the estimator ook θθθ +− )ˆ( 1 , 

for ,θ  but if ,1̂ R∉θ  obtain ,,...,2,1, 22 niT i = compute 2θ̂ , and then pool 1̂θ  and 2θ̂  

to find nnn /)ˆˆ(ˆ
2211 θθθ += . The TPSE of θ   is thus given by,  

}{ ,ˆ])ˆ([~
1 RRoo IIk θθθθθ ++−=                                       (2.1) 

where 10 ≤≤ k , RI  and RI  are respectively the indicator functions of the acceptance 

region ,R  and the rejection region .R  
Several authors have studied the TPSE for the parameter θ  of the exponential 

distribution for complete, right censored data by choosing different k  and .R  (see Al-
Hemyari 2010; Rakesh and Vilpa 2007; Kambo et al. 1991a; Gokhale and Adke 1989; 
Handa et al. 1988; Adke et al. 1987).  Katti (1962), Al-Bayyati and Arnold (1972), Waiker 
et al. (1984), Kambo et al. (1991b), Waiker et al. (2001), and Al-Hemyari (2009a, 2009b) 
discussed other choices for k  and R  with different estimation problems.  

It may be remarked that  Chiou (1987) discussed the problem of estimating the 
reliability function )(tR  of the exponential model using single-stage right censored data, 
and proposed a shrinkage estimator, 
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 1C  and 2C  respectively are the lower and upper  

100( /2) percentile points of the chi-square distribution of 2r degrees of freedom and the 
minimum variance unbiased estimator )t(R

(
 (see Basu, 1964) is, 
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This estimator has been adapted in various other situations by many authors. For 
example, Instead of using ),θ/texp( 0−  Chiou (1992) used ),t(R)k1()θ/texp(k 0

(
−+−  

α
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where )1k0(k <<  is an arbitrary constant and Chiou (1993) also proposed empirical 
Bayes shrinkage estimation of )(tR . The procedure of Baklizi and Ahmed (2008) was 
closely related to Chiou (1992). Al-Hemyari (2009c) discussed a two-stage pooling 
shrinkage estimation procedure for )(tR  with a constant shrinkage factor using the 
complete data. Finally, Al-Hemyari (2010) considered a shrinkage estimator of estimation 
the scale parameter and reliability function of Weibull distribution in different context. 

The purpose of this paper is not to simply extend Al-Hemyari’s (2009c) estimator to 
other estimation problems. Rather, we assume a time censored sample where the aim is to 
find a estimator of the reliability function which offers some improvement over the 
classical estimators. The expressions for the bias, mean squared error, expected sample 
size and relative efficiency are obtained and studied numerically, and numerical results 
and conclusions drawn from those are presented. 

 
 

3. TPSE FOR )(tR  
 
As mentioned, the exponential model serves as a very useful model in analyzing the 

life testing and reliability censored data. Among the different censoring schemes, 
interestingly, the time censored data (plan (n, C, T))) receives a considerable attention, 
particularly in the reliability analysis. In this section first we define the general proposed 
estimator, and we obtain the expected value, bias and mean squared error expressions of 

jθ̂  and ),(ˆ tR  then we describe the choice of the region R , and finally we obtain the 
necessary expressions of the proposed estimator.  

 
3.1 The proposed estimator using the plan (n, C, T) 
 

The construction of proposed estimator is considered in this section; and  we are 
concerned with the sampling plan (n, C, T) (we use the term ‘ plan (n, C, T)’ which 
Gnedenko et al. 1969  proposed) where the observations are carried out for a period of 
time ojT  and each unit that fails is replaced with a new one identical to the old one. For 

this case we observe the Poisson flow of failures during the period ojT  (Gnedenko et al. 
1969; Sinha, 1986; Johnson et al. 2005). 

Let 2,1,...
21

=≤≤≤ jTTT
rjjjrjr  , be the failure times of the first 0rj  items that 

fail before a specified time
ojT . Suppose that the underlying distribution of each jiT  is an 

exponential distribution with )(tFθ and oθ being  the prior information about .θ  We wish 

to estimate )(tR  by the following PSE: compute 011011 /ˆ Tnr=θ   and construct a region 

R  in the space of θ   based on .oθ  If  ,1̂ R∈θ  use the estimator 

))ˆ((exp( 1 ookt θθθ +−−  for ),(tR but if ,1̂ R∉θ compute 022022 /ˆ Tnr=θ  and then pool 
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1̂θ  and 2θ̂  to find )/()ˆˆ(ˆ
212211 nnnn ++= θθθ  and use the estimator )ˆexp( θt−  for 

)(tR . The TPSE of )(tR  is thus given by,     
[ ]{ },][)(~ )/())/()/(()))/((( 21020201010001101

R
nnTrTrt

R
Tnrkt IeIetR ++−+−− += θθ

                      (3.1) 

where RI  and RI  are respectively the indicator functions of the acceptance region ,R  

and the rejection region ,R  and 
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It may be noted here that the number of failures 0rj  has a Poisson distribution with 

the parameter )( 0Tn jj θ  and 0rj  is sufficient as well as a complete statistic. The 
measures which are used for studying the behaviour of the proposed pooling shrinkage 
estimator PSE are the bias ratio, mean squared error, expected sample size required for 
obtaining ),(~ tR  and the percentage of the overall sample size saved. Whereas the main 
criterion used for comparison of two pooling estimators is the relative efficiency, which 
is defined by the ratio of two corresponding mean squared errors. 

It can be easily shown that the expected value, bias and mean squared error of jθ̂  are, 
respectively, given by: 
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where for any integer m, 
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3.2 Choices for region R  

        
Estimator (3.1) is completely obtained by specifying the region .R  Therefore, it 

seems reasonable to construct a region denoted by R   by the criterion, 
)},|ˆ()(:{ 1

2
0 θθθθθ MSER ≤−=                                            (3.7) 

i.e., the square of differences between the initial estimate oθ  and the actual value of   

should not exceed the ).|ˆ( 1 θθMSE  This gives the first choice 1R  by the following 
interval,  

)],1/(),1/([ 11111 dqdqR −+=                                             (3.8) 

where ].1)],()4),()(,(),([[ 101111121
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θ



66                                                                      Pooling shrinkage estimator of reliability for exponential failure 

Sometimes it may not be possible to express 1R  as an interval, simplified, as 

)|ˆ( 1 θθMSE  often depends on .θ  In this case region R  may be approximated by the 

interval 2R  given by,   
)}.|ˆ()(:{ 01

2
02 θθθθθ MSER ≤−=                                            (3.9) 

Simple calculations lead to, 
)],1(),1(,0([ 21212 dqdqMaxR +−= ∗∗                              (3.10) 

where ,1)],()4),()(,(),([ 101111122
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Remarks: Special cases 
1) It may be noted here that .01 ≥d  If  2,1,0 == idi  or ,11 ≥d  the estimator )(~ tR  is 

a single-stage and hence we do not consider it. 
2) The estimator )(~ tR   corresponding to the choice ,1=k  is Katti’s (1962) type estimator  

and is given by, 
[ ]{ }.][)(~ ))/())/()/((()/( 210202010101101

R
nnTrTrt
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                         (3.11) 

3) Also, the estimator )(~ tR   corresponding to the choice ,0=k  is Kambo et al. (1991) 
type estimator and is given by, 
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                                (3.12) 
 

3.3 Expressions of the classical and proposed estimators 
   
In order to study the behavior of the proposed TPSE, the bias, mean squared error 

and relative efficiency of the classical and proposed estimator are derived in this section. 
It can be easily shown that the expected value, bias and mean squared error of the classical 
estimator )(ˆ tR  are respectively, given by: 
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Let 2,1],,[ == ibaR iii  the expressions for the bias ratio, mean squared error and 

expected sample size of the proposed estimator )(~ tR  are given respectively by: 
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    (3.17) 
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and )./( 0 θθλ = The efficiency of )(~ tR  relative to )(ˆ tR  is easily obtained as follows, 
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4. SIMULATION AND NUMERICAL RESULTS 
 
An exact analytical study of the performance of the proposed estimator )(~ tR  is not 

possible because of the expressions of the bias ratio, expected sample size, and relative 
efficiency appear to be complicated. Therefore, we are left with no other better choice 
than an empirical study.  

To observe the performance of the proposed estimator ),(~ tR  and to give useful 
comparison between the proposed and classical estimator of ),(tR  we perform  computer  
calculations for bias ratio, mean squared error, relative efficiency, expected sample size 
expressions and percentage of the overall sample size saved )ˆPr()/(100 12 iRnn ∈× θ , 
were done for each of the two types of region ,2,1, =iRi  for different values of the first 
and second stage samples, and for varying the constants involved in the proposed 
estimator ).(~ tR  Specifically, numerical computation were performed by taking 

,12)2(4,12)2(4 21 == nn  jq ,2)5.0(5.0=  ,11 qq λ=∗  ,0.3)1.0(3.0=θt  
,1)1.0(1.0=k  and .10)1.0(0=λ Some of these results are presented in Figures 4.1-4.9.  

We make the following observations from tables presented in this paper as numerical 
results, comparisons, and limitations. 

 
4.1 Numerical results: 

 
1. Both regions give highest relative efficiency when  θ   is close to ,0θ i.e., 1≅λ and 

decreases as |1| −λ increases. 
2. The regions 1R  and 2R  yield mean squared error, bias and expected sample size of 

approximately the same order. Region 1R  is useful when it can be expressed as an 
interval. Otherwise to avoid computational difficulties 2R  may be preferred over 1R , 
and hence the computations of the bias ratio, expected sample size and relative 
efficiency of )(~ tR with 1R  are not reported here to save space. 

3. Relative efficiency of )(~ tR  is a concave function of λ , i.e., the proposed estimator 

has maximum efficiency in the neighborhood of .1≅λ  
4. The relative efficiency of )(~ tR is a decreasing function of ,,, 11 qnk  and .2q  

))(ˆ|)(~( tRtRRE  is also an increasing function of θt  and 2n , i.e., ,12,4 21 ≅≅ nn  

,1≅λ ,5.0,1.0 210 ==== qqqk  and 3=θt yield the highest efficiency. Thus the 

choice ,12,4 21 ≅≅ nn 1≅λ , k =0.1, 5.0210 === qqq  and 3=θt  is 
recommended. The computations for other values have not been presented, to save 
space.  
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5. Expected sample size is close to 1n  for small values of 1n  and increasing slowly with 

increase of 1n . )),(~|( iRtRnE  is generally smaller than .n  

6. As expected the percentage of the overall sample saved of ),(~ tR  is an increasing 
function of ,2n i.e. this percentage is from %20  to %8  (when 22 =n ); whereas the 
same is %43  to %30  (when )122 =n . 

7. For fixed 2n   the percentage of the overall sample size saved is a decreasing function 
of ,1n  i.e. the saving is from %20  to %45  (when 41 =n ); whereas the same is %8  
to %30  (when ).121 =n  

 
4.2 Comparisons: 

 
1. From Figures 4.1-4.6, we note that the estimator )(~ tR  for 100 ≤≤ λ  has smaller mean 

squared error than the pooled classical estimator ).(ˆ tR  
2. The relative efficiency of the proposed TPSE is much greater than the classical 

estimator (as much as 230 times) for small 1n  in the neighborhood of .1≅λ  

3. The estimator )(~ tR  is biased. From Figure 7 it is observed that the bias ratio is 

reasonably small when θ  is sufficiently close to 0θ .  
 
 

5. LIMITATION AND CONCLUSIONS 
 

In this section, we study the limitation, and the conclusions of the proposed estimator. 
 

5.1 Limitation 
      
As was noted earlier, the TSPE perform better than classical estimators in the 

neighborhood of ,1≅λ   i.e., they have higher relative efficiency when 0θθ ≅  but lower 
efficiency otherwise. It is not necessary that the prior value 0θ always be close to the true 

valueθ , thus, our proposed estimator )(~ tR  has the same limitations, but are relatively 

much better than the classical estimator )(ˆ tR  in terms of higher relative efficiency and 
broader range of λ  for which efficiency is greater than unity. 
 
5.2 Conclusions: 

 
1. As the main objective of TPSE is to reduce the cost of the sampling units of the 

estimator, i.e., to cut down the sample size without reducing efficiency, we prefer to 
study empirically the relationship between the relative efficiency, λ  and the ratio
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)/( 12 nn . Indeed the value of 1n  is dictated by the availability of the experimental data 
and the second sample 2n  can be produced whenever necessary, by performing a new 
experiment. It is observed from our computation (Figures 4.1-4.6), that (for 

2.18.0 >> λ ) the increment of the maximum increase in relative efficiency decreases 
with ),/( 12 nn   and is between %15 (when 25.0)/( 12 =nn ) to %3  (when

3)/( 12 =nn ) approximately. The corresponding increment of increase in )/( 12 nn  (or 
in )n  is almost fixed, and is )/( 12 nn %. Thus the choice 121 3)4/1( nnn ≤≤  (which 
is depends upon the availability of experimental data) is recommended to get relative 
efficiency more than 1. 

2. We have considered TPSE for )(tR  when the data is time censored. It is clear that if 
we have a proper prior value of the unknown parameterθ , then TPSE of )(tR  has clear 

advantage over the classical estimator ).(ˆ tR  It is observed that the expected sample 
size is close to ,1n  and increases very slowly with increases of 1n  also for 100 ≤≤ λ , 

and the TPSE )(~ tR  of  R (t)  is better than the classical estimator )(ˆ tR  both in terms of 

higher relative efficiency, and broader range of λ  for which efficiency is greater than 
unity. Accordingly, even if the experimenter has less confidence in the guessed value 

0θ  (if R∉1̂θ ), the relative efficiency is greater than the classical estimator. We have 
also reported the optimal choice for the constants involved in the proposed estimator. 
Thus )(~ tR  may be used to improve the efficiency and to decrease the sample size of 

experimentation if λ  belongs to the region 100 ≤≤ λ .  
 
  

 
Figure 4.1.   ,5.0=iq  3=θt , ,12)2(2,4 21 == nn ,10)1.0(1.0=λ  and .1.0=k  
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Figure 4.2. ,5.0=iq   3=θt , ,12)2(2,8 21 == nn  ,10)1.0(1.0=λ and .1.0=k  

 
 
 

 

 
Figure 4.3. ,5.0=iq  3=θt , ,12)2(2,12 21 == nn ,8)1.0(1.0=λ  and .1.0=k  
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Figure 4.4. ,5.0=iq  3=θt , ,12)2(2,4 21 == nn ,10)1.0(1.0=λ and .1.0=k  

 
 
 

 
Figure 4.5. ,5.0=iq  ,9.2=θt ,12)2(2,8 21 == nn ,10)1.0(1.0=λ  and .1.0=k  
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Figure 4.6. ,5.0=iq  ,9.2=θt ,10)1.0(1.0=λ ,12)2(2,12 21 == nn  and .2.0=k  

 
 
 

 
Figure 4.7. ,5.0=iq  12)2(2,4 21 == nn  ,3=θt ,10)1.0(1.0=λ  and .1.0=k  
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Figure 4.8. ,5.0=iq  ,12)2(2,12,8,4 21 == nn  ,10)1.0(1.0=λ ,3=θt  and .1.0=k   

Figure 4.9. ,5.0=iq  ,12)2(2,12,8,4 21 == nn  ,10)1.0(1.0=λ ,3=θt  and .1.0=k   
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