• 제목/요약/키워드: Time-stepping method

검색결과 165건 처리시간 0.03초

AN EFFICIENT AND ACCURATE ADAPTIVE TIME-STEPPING METHOD FOR THE BLACK-SCHOLES EQUATIONS

  • HYEONGSEOK HWANG;SOOBIN KWAK;YUNJAE NAM;SEOKJUN HAM;ZHENGANG LI;HYUNDONG KIM;JUNSEOK KIM
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제28권3호
    • /
    • pp.88-95
    • /
    • 2024
  • In this article, we propose an efficient and accurate adaptive time-stepping numerical method for the Black-Scholes (BS) equations. The numerical scheme used is the finite difference method (FDM). The proposed adaptive time-stepping computational scheme is based on the maximum norm of the discrete Laplacian values of option values on a discrete domain. Most numerical solvers for the BS equations require a small time step when there are large variations in the solutions. To resolve this problem, we propose an adaptive time-stepping algorithm that uses a small time step size when the maximum norm of the discrete Laplacian values on a discrete domain is large; otherwise, a larger time step size is used to speed up the computation. To demonstrate the high performance of the proposed adaptive time-stepping methodology, we conduct several computational experiments. The numerical tests confirm that the proposed adaptive time-stepping method improves both the efficiency and accuracy of computations for the BS equations.

시간차분 유한요소법을 이용한 대용량 삼상 변압기의 정상상태 해석에 관한 연구 (Study on Steady State Analysis of High Power Three-Phase Transformer using Time-Stepping Finite Element Method)

  • 윤희성;서민규;고창섭
    • 전기학회논문지
    • /
    • 제61권8호
    • /
    • pp.1123-1129
    • /
    • 2012
  • This paper presents the fast steady state analysis using time-stepping finite element method for a high power three-phase transformer. The high power transformer spends huge computational cost of the time-stepping finite element method. It is because that the high power transformer requires a lot of time to reach steady state by its large inductance component. In order to reduce computational cost, in this paper, the adaptive time-step control algorithm combined with the embedded 2nd 4th singly diagonally implicit Runge-Kutta method and the analysis strategy using variation of the winding resistance are studied, and their numerical results are compared with those from the typical time-stepping finite element method.

LARGE TIME-STEPPING METHOD BASED ON THE FINITE ELEMENT DISCRETIZATION FOR THE CAHN-HILLIARD EQUATION

  • Yang, Yanfang;Feng, Xinlong;He, Yinnian
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1129-1141
    • /
    • 2011
  • In this paper, a class of large time-stepping method based on the finite element discretization for the Cahn-Hilliard equation with the Neumann boundary conditions is developed. The equation is discretized by finite element method in space and semi-implicit schemes in time. For the first order fully discrete scheme, convergence property is investigated by using finite element analysis. Numerical experiment is presented, which demonstrates the effectiveness of the large time-stepping approaches.

다중 격자 기법을 위한 예조건화된 다단계 시간 전진 기법 (Preconditioned Multistage Time Stepping for the Multigrid Method)

  • 김윤식;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 춘계 학술대회논문집
    • /
    • pp.127-133
    • /
    • 2001
  • In this paper, the preconditioned multistage time stepping methods which are popular multigrid smoothers is studied for the compressible flow calculations. Fourier analysis on the local time stepping and block-Jacobi preconditioned residual operators is performed using the linearized 2-D Navier-Stokes equations. It fumed out that block-Jacobi preconditioner has better performance in eigenvalue clustering. They are implemented in the 2-D compressible Euler and Wavier-Stokes calculations with multigrid methods to verify that the block-Jacobi preconditioned multistage time stepping shows better performance in convergence acceleration.

  • PDF

이중 시간전진법과 Preconditioning을 이용한 저속의 압축성유동에 대한 비정상 해석기법 (Time accurate method for low speed compressible flows using dual time stepping and preconditioning procedure)

  • 최윤호;강신형
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.788-802
    • /
    • 1998
  • A numerical method using dual time stepping and preconditioning procedure for efficient computations of unsteady low speed compressible flow problems is developed. The time-derivative preconditioning method which is valid at low speed flow conditions cannot maintain temporal accuracy because of the modification of the time-derivative term in Navier-Stokes equations. The dual time stepping procedure is incorporated to enable the time accurate computations and this procedure introduces a pseudo-time derivative in addition to the physical time derivative. At a given physical time, an inner iteration can be carried out until a steady state in pseudo-time is achieved. This will effectively yield a time accurate solution. Computational capabilities of the above algorithm are demonstrated through computation of a variety of practical fluid flows and it is shown that the algorithms is efficient in the essentially incompressible flows and low Mach number compressible flows with heat source.

A boundary element method based on time-stepping approximation for transient heat conduction in anisotropic solids

  • Tanaka, Masa;Matsumoto, T.;Yang, Q.F.
    • Structural Engineering and Mechanics
    • /
    • 제4권1호
    • /
    • pp.61-72
    • /
    • 1996
  • The time-stepping boundary element method has been so far applied by the authors to transient heat conduction in isotropic solids as well as in orthotropic solids. In this paper, attempt is made to extend the method to 2-D transient heat conduction in arbitrarily anisotropic solids. The resulting boundary integral equation is discretized by means of the boundary element with quadratic interpolation. The final system of equations thus obtained is solved by advancing the time step from the given initial state to the final state. Through numerical compuation of a few examples the potential usefulness of the proposed method is demonstrated.

Improved Characteristic Analysis of a 5-phase Hybrid Stepping Motor Using the Neural Network and Numerical Method

  • Lim, Ki-Chae;Hong, Jung-Pyo;Kim, Gyu-Tak;Im, Tae-Bin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제11B권2호
    • /
    • pp.15-21
    • /
    • 2001
  • This paper presents an improved characteristic analysis methodology for a 5-phase hybrid stepping motor. The basic approach is based on the use of equivalent magnetic circuit taking into account the localized saturation throughout the hybrid stepping motor. The finite element method(FEM) is used to generate the magnetic circuit parameters for the complex stator and rotor teeth and airgap considering the saturation effects in tooth and poles. In addition, the neural network is used to map a change of parameters and predicts their approximation. Therefore, the proposed method efficiently improves the accuracy of analysis by using the parameter characterizing localized saturation effects and reduces the computational time by using the neural network. An improved circuit model of 5-phase hybrid stepping motor is presented and its application is provided to demonstrate the effectiveness of the proposed method.

구조동역학 문제에서 전단계 오차추정치를 이용한 자동시간간격 조정 알고리듬 (An Automatic Time Stepping Algorithm Using a Prior Error Estimator in Structural Dynamics)

  • 조은형;정진태
    • 소음진동
    • /
    • 제9권6호
    • /
    • pp.1240-1246
    • /
    • 1999
  • A prior error estimator which is solving structural dynamic problems and which is based on the generalized-method, is developed. Since the proposed error estimator is computed with only previous information, the time step size can be adaptively selected without the feedback mechanism. This paper shows that the automatic time stepping algorithm using the error estimator performs an efficient time integration. To verify its efficiency, several examples are numerically investigated.

  • PDF

FE Analysis of Hybrid Stepping Motor (HSM)

  • Jang Ki-Bong;Lee Ju
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권1호
    • /
    • pp.39-42
    • /
    • 2005
  • Though full 3D analysis is the proper method to analyze the hybrid stepping motor (HSM), it has weak points in the areas of computation time and complexity. This paper introduces 2D FEA using a virtual magnetic barrier for the axial cross section to save computation time. For the purpose of 2D FEA, the virtual magnetic barrier and equivalent permanent magnet model of HSM are proposed. This result is compared with that of experimental and 3D analysis, considered as a reference result.