Acknowledgement
The corresponding author (J.S. Kim) was supported by the Brain Korea 21 FOUR through the National Research Foundation of Korea funded by the Ministry of Education of Korea.
References
- J. Wang, S. Wen, M. Yang, W. Shao, Practical finite difference method for solving multi-dimensional Black-Scholes model in fractal market, Chaos, Solitons & Fractals, 157 (2022), 111895.
- M.M. Khalsaraei, A. Shokri, H. Ramos, Z. Mohammadnia, P. Khakzad, A positivity-preserving improved nonstandard finite difference method to solve the Black-Scholes equation, Mathematics, 10(11) (2022), 1846.
- N. Abdi, H. Aminikhah, A.H.R. Sheikhani, High-order compact finite difference schemes for the time-fractional Black-Scholes model governing European options, Chaos, Solitons & Fractals, 162 (2022), 112423.
- Y. Chen, L. Wei, S. Cao, F. Liu, Y. Yang, Y. Cheng, Numerical solving for generalized Black-Scholes-Merton model with neural finite element method, Digital Signal Processing, 131 (2022), 103757.
- E.R. Wijayanti, N. Susyanto, European call options pricing numerically using finite element method, IAENG International Journal of Applied Mathematics, 52(4) (2022), 1-6.
- Anderson, T. (2023). Numerical solution of the Black-Scholes equation using finite element methods, Ph.D. thesis, Colorado State University.
- N. Thakoor, D.K. Behera, A numerical algorithm based on a fitted finite volume method for option pricing with its implementation in mathematica, ICT Systems and Sustainability, Lecture Notes in Networks and Systems, Springer, Proceedings of ICT4SD, Singapore 2022.
- M.A.H. Sajib, A.S. Hossain, S. Sudha, A comparative analysis of Crank-Nicolson Scheme between finite volume method and finite difference method for pricing European Option. GANIT: Journal of Bangladesh Mathematical Society, 42(2) (2022), 1-13.
- Ewen, T. Pricing of European calls with the quantum Fourier transform, arXiv preprint (2024) arXiv:2404.14115.
- F. Baschetti, G. Bormetti, S. Romagnoli, P. Rossi, The SINC way: A fast and accurate approach to Fourier pricing, Quantitative Finance, 22(3) (2022), 427-446.
- M. Ma, J. Yang, R. Liu, A novel structure automatic-determined Fourier extreme learning machine for generalized Black-Scholes partial differential equation, Knowledge-Based Systems, 238 (2022), 107904.
- R. Zvan, K.R. Vetzal, P.A. Forsyth, PDE methods for pricing barrier options, Journal of Economic Dynamics and Control, 24(11-12) (2000), 1563-1590.
- J. Persson, L. von Persson, Pricing European multi-asset options using a space-time adaptive FD-method, Computing and Visualization in Science, 10 (2007), 173-183.
- J. Persson, L. von Sydow, Pricing American options using a space-time adaptive finite difference method, Mathematics and Computers in Simulation, 80(9) (2010), 1922-1935.
- P. Lotstedt, J. Persson, L. von Sydow, J. Tysk, Space-time adaptive finite difference method for European multi-asset options Computers & Mathematics with Applications, 53(8) (2007), 1159-1180.
- E. Hairer, S.P. Norsett, G. Wanner. Solving ordinary differential equations, Springer Series in Computational Mathematics 8, Springer-Verlag, Berlin, 1993.
- D. Jeong, M. Yoo, J. Kim, Accurate and efficient computations of the greeks for options Near expiry using the Black-Scholes equations, Discrete Dynamics in Nature and Society, 2016(1) (2016), 1586786.
- W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery numerical recipes in C (Vol. 2), Cambridge University Press, Cambridge, UK, 1996.
- A.Q. Khaliq, D.A. Voss, K. Kazmi, Adaptive θ-methods for pricing American options, Journal of Computational and Applied Mathematics, 222(1) (2008), 210-227.
- G. Linde, J. Persson, L. Von Sydow, A highly accurate adaptive finite difference solver for the Black-Scholes equation, International Journal of Computer Mathematics, 86(12) (2009), 2104-2121.