• Title/Summary/Keyword: Time-series Model

Search Result 2,673, Processing Time 0.032 seconds

State-Space Model Based On-Line Parameter Estimation for Time-Delay Systems

  • Choi, Young-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.76.5-76
    • /
    • 2001
  • This paper considers the parameter estimation for the state-space model based time-delay systems in the case that the Lyapunov stability of the system is guaranteed. In order to estimate the parameters, two estimation methods can be proposed which are known as the parallel model and the series parallel model. It is shown that the parameters can be estimated using each method, and also certied that the results are correct by simulations.

  • PDF

Time series clustering for AMI data in household smart grid (스마트그리드 환경하의 가정용 AMI 자료를 위한 시계열 군집분석 연구)

  • Lee, Jin-Young;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.791-804
    • /
    • 2020
  • Residential electricity consumption can be predicted more accurately by utilizing the realtime household electricity consumption reference that can be collected by the AMI as the ICT developed under the smart grid circumstance. This paper studied the model that predicts residential power load using the ARIMA, TBATS, NNAR model based on the data of hour unit amount of household electricity consumption, and unlike forecasting the consumption of the whole households at once, it computed the anticipated amount of the electricity consumption by aggregating the predictive value of each established model of cluster that was collected by the households which show the similiar load profile. Especially, as the typical time series data, the electricity consumption data chose the clustering analysis method that is appropriate to the time series data. Therefore, Dynamic Time Warping and Periodogram based method is used in this paper. By the result, forecasting the residential elecrtricity consumption by clustering the similiar household showed better performance than forecasting at once and in summertime, NNAR model performed best, and in wintertime, it was TBATS model. Lastly, clustering method showed most improvements in forecasting capability when the DTW method that was manifested the difference between the patterns of each cluster was used.

Evidence of Taylor Property in Absolute-Value-GARCH Processes for Korean Financial Time Series (Absolute-Value-GARCH 모형을 이용한 국내 금융시계열의 Taylor 성질에 대한 사례연구)

  • Baek, J.S.;Hwang, S.Y.;Choi, M.S.
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.1
    • /
    • pp.49-61
    • /
    • 2010
  • The time series dependencies of Financial volatility are frequently measured by the autocorrelation function of power-transformed absolute returns. It is known as the Taylor property that the autocorrelations of the absolute returns are larger than those of the squared returns. Hass (2009) developed a simple method for detecting the Taylor property in absolute-value-GAROH(1,1) (AVGAROH(1,1)) model. In this article, we fitted AVGAROH(1,1) model for various Korean financial time series and observed the Taylor property.

Realization of an outlier detection algorithm using R (R을 이용한 이상점 탐지 알고리즘의 구현)

  • Song, Gyu-Moon;Moon, Ji-Eun;Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.3
    • /
    • pp.449-458
    • /
    • 2011
  • Illegal waste dumping is one of the major problems that the government agency monitoring water quality has to face. Recently government agency installed COD (chemical oxygen demand) auto-monitering machines in river. In this article we provide an outlier detection algorithm using R based on the time series intervention model that detects some outlier values among those COD time series values generated from an auto-monitering machine. Through this algorithm using R, we can achieve an automatic algorithm that does not need manual intervention in each step, and that can further be used in simulation study.

Short-term Wind Power Prediction Based on Empirical Mode Decomposition and Improved Extreme Learning Machine

  • Tian, Zhongda;Ren, Yi;Wang, Gang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1841-1851
    • /
    • 2018
  • For the safe and stable operation of the power system, accurate wind power prediction is of great significance. A wind power prediction method based on empirical mode decomposition and improved extreme learning machine is proposed in this paper. Firstly, wind power time series is decomposed into several components with different frequency by empirical mode decomposition, which can reduce the non-stationary of time series. The components after decomposing remove the long correlation and promote the different local characteristics of original wind power time series. Secondly, an improved extreme learning machine prediction model is introduced to overcome the sample data updating disadvantages of standard extreme learning machine. Different improved extreme learning machine prediction model of each component is established. Finally, the prediction value of each component is superimposed to obtain the final result. Compared with other prediction models, the simulation results demonstrate that the proposed prediction method has better prediction accuracy for wind power.

Useful Control Equations for Practitioners on Dynamic Process Control

  • Suzuki, Tomomichi;Ojima, Yoshikazu
    • International Journal of Quality Innovation
    • /
    • v.3 no.2
    • /
    • pp.174-182
    • /
    • 2002
  • System identification and controller formulation are essential in dynamic process control. In system identification, data for system identification are obtained, and then they are analyzed so that the system model of the process is built, identified, and diagnosed. In controller formulation, the control equation is derived based on the result of the system identification. There has been much theoretical research on system identification and controller formulation. These theories are very useful when they are appropriately applied. To our regret, however, these theories are not always effectively applied in practice because the engineers and the operators who manage the process often do not have the necessary understanding of required time series analysis methods. On the other hand, because of widespread use of statistical packages, system identification such as estimating ARMA models can be done with little understanding of time series analysis methods. Therefore, it might be said that the most theoretically difficult part in practice is the controller formulation. In this paper, lists of control equations are proposed as a useful tool for practitioners to use. The tool supports bridging the gap between theory and practice in dynamic process control. Also, for some models, the generalized control equations are obtained.

Forecasting Exchange Rates: An Empirical Application to Pakistani Rupee

  • ASADULLAH, Muhammad;BASHIR, Adnan;ALEEMI, Abdur Rahman
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.4
    • /
    • pp.339-347
    • /
    • 2021
  • This study aims to forecast the exchange rate by a combination of different models as proposed by Poon and Granger (2003). For this purpose, we include three univariate time series models, i.e., ARIMA, Naïve, Exponential smoothing, and one multivariate model, i.e., NARDL. This is the first of its kind endeavor to combine univariate models along with NARDL to the best of our knowledge. Utilizing monthly data from January 2011 to December 2020, we predict the Pakistani Rupee against the US dollar by a combination of different forecasting techniques. The observations from M1 2020 to M12 2020 are held back for in-sample forecasting. The models are then assessed through equal weightage and var-cor methods. Our results suggest that NARDL outperforms all individual time series models in terms of forecasting the exchange rate. Similarly, the combination of NARDL and Naïve model again outperformed all of the individual as well as combined models with the lowest MAPE value of 0.612 suggesting that the Pakistani Rupee exchange rate against the US Dollar is dependent upon the macro-economic fundamentals and recent observations of the time series. Further evidence shows that the combination of models plays a vital role in forecasting, as stated by Poon and Granger (2003).