
J Electr Eng Technol.2018; 13(5): 1841-1851 
http://doi.org/10.5370/JEET.2018.13.5.1841 

 1841
Copyright ⓒ The Korean Institute of Electrical Engineers 

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ 
licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Short-term Wind Power Prediction Based on Empirical Mode 
Decomposition and Improved Extreme Learning Machine 

 
 

Zhongda Tian†, Yi Ren* and Gang Wang* 
 

Abstract – For the safe and stable operation of the power system, accurate wind power prediction is 
of great significance. A wind power prediction method based on empirical mode decomposition and 
improved extreme learning machine is proposed in this paper. Firstly, wind power time series is 
decomposed into several components with different frequency by empirical mode decomposition, 
which can reduce the non-stationary of time series. The components after decomposing remove the 
long correlation and promote the different local characteristics of original wind power time series. 
Secondly, an improved extreme learning machine prediction model is introduced to overcome the 
sample data updating disadvantages of standard extreme learning machine. Different improved 
extreme learning machine prediction model of each component is established. Finally, the prediction 
value of each component is superimposed to obtain the final result. Compared with other prediction 
models, the simulation results demonstrate that the proposed prediction method has better prediction 
accuracy for wind power. 
 

Keywords: Short-term wind power, Prediction, Empirical mode decomposition, Improved extreme 
learning machine.  

 
 
 

1. Introduction 
 
With the rapid development of the world economy, the 

corresponding demand for energy has also increased greatly, 
and traditional fossil energy faces the threat of energy 
exhaustion. At the same time, caused by a mass of traditional 
fossil energy consumption and climate warming, as well as 
the increasingly serious problem of environmental pollution 
is becoming more and more serious, the ecological system, 
economy and human health are posing a serious threat [1]. 
In order to cope with the shortage of traditional fossil 
energy and the environmental pollution caused by traditional 
fossil energy, wind power has become the research direction 
of many countries [2]. However, the rapid development of 
wind energy also faces some serious problems [3]. Due to 
the instability of the wind, wind power has volatility and 
intermittency, which will seriously affect the power grid 
make a reasonable scheduling of wind power. Therefore, 
the accurate prediction of wind power is very meaningful 
to the power grid [4].  

From time scales, wind power prediction includes short-
term, medium-term, and long-term prediction. The time 
scale for short-term prediction is several hours to several 
days in advance. Short-term prediction can help the grid to 
carry out reasonable economic scheduling, unit combination 
operation and choose the right time to maintain the fan. 

The time scale for medium-term prediction is several days 
to several months in advance. The results of medium-term 
wind power prediction can help wind farms to make 
quarterly power generation plans and arrange maintenance 
activities. The time scale for long-term prediction is several 
months to several years in advance. Long-term wind power 
prediction can be used to evaluate the potential annual 
power generation of a region, mainly in the location of 
wind farms. Due to the complexity of the wind speed and 
other weather conditions in the short-term scale, the 
prediction accuracy of short-term wind power is more 
difficult to be guaranteed [5]. This paper focuses on the 
prediction of short-term wind power.  

At present, the common wind power forecast includes 
numerical weather prediction (NWP) method and statistical 
method [6]. NWP prediction method requires accurate 
NWP data and detailed physical information on the area 
where the wind farm is located. At the same time, NWP 
data will be updated once every few hours. So NWP 
prediction method is more suitable for medium-term and 
long-term wind power prediction. It is not suitable for 
short-term wind power prediction. The prediction accuracy 
of NWP method relies on a high degree of accuracy and 
popularity of the NWP data. Meanwhile, NWP method 
requires a lot of parameters such as wind speed, wind 
direction, air pressure, etc. In many areas, NWP system has 
not been established. NWP data is affected by the 
environment and physical factors. At the same time, the 
wind power is proportional to the cube of the wind speed, 
the prediction error will be will be amplified. These factors 
greatly limit the prediction accuracy of NWP prediction 
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model of wind power [7].  
The statistical methods include time series prediction 

method [8, 9], neural network prediction model [10-12], 
Kalman filtering prediction model [13],  fuzzy clustering 
prediction model [14, 15], auto regressive moving average 
(ARMA) prediction model [16], support vector machine 
(SVM) [17, 18], least square support vector machine 
(LSSVM) [19, 20], etc,. According to the intrinsic statistical 
characteristics and development rules of system 
development, through the historical data of the past and 
statistical analysis, time series analysis can further 
speculate the future development trend of the system. 
Through the study of time series to understand the 
structural characteristics of the system (such as the cycle 
of fluctuations, amplitude, the type of trends, etc.); reveal 
its operating rules, and then used to predict and control 
their future behavior. Through the study of time series can 
grasp the nature of the system, so as to achieve the future 
prediction. However, time series analysis methods have 
different prediction results with the different model 
order. Although the neural network has good robustness, 
generalization and fault tolerance ability, its learning 
convergence speed is slow, easy to fall into local optimal 
value and difficult to achieve the global optimal value. 
Kalman filtering model is difficult to obtain statistical 
properties of noise. ARMA is only suitable for the 
prediction of a linear sequence. For wind power with the 
nonlinear characteristics; the prediction accuracy is 
difficult to be guaranteed. At the same time, the fuzzy 
rules in the fuzzy clustering model are too difficult to be 
determined. As a learning method based on statistical 
learning theory, SVM and LSSVM need very few samples 
and have strong generalization ability. But the optimal 
parameters of SVM or LSSVM are difficult to be 
determined. The inappropriate parameters directly affect 
the prediction effect of SVM or LSSVM. Therefore, these 
prediction methods based on statistical models also have 
their specific shortcomings. 

At present, the wind power prediction accuracy obtained 
by single prediction method is low. The main reason is due 
to the intermittency, uncertainty of the wind speed and the 
limitations of the prediction methods. Therefore, the single 
prediction model has been unable to meet the needs of 
prediction accuracy. Combination prediction model is one 
of the development directions of wind power prediction 
[21]. According to the characteristics of each model, the 
combination prediction model establishes the combination 
model through the idea of complementary advantages, and 
improves the prediction accuracy.   

In 2006, Huang et al proposed a new neural network - 
extreme learning machine extreme (ELM) algorithm [22]. 
The ELM algorithm uses the random mechanism to reduce 
the parameter setting and choice. It is one kind of simple 
feasible fast learning algorithm. Compared with other 
traditional neural network learning algorithms, SVM or 
LSSVM, etc., ELM algorithm has the advantages of fast 

learning speed and strong generalization ability [23]. The 
literature [24] points out that the computing time of ELM 
is usually several thousand times faster than BP neural 
network or SVM. Therefore, the ELM algorithm has 
been applied to prediction of many time series including 
wind power [25, 26]. But in the ELM algorithm, the value 
of the new and old training samples is equal, and the 
same weight is given to them, which can not highlight 
the role of the new training samples. The updating model 
of the network weights is not flexible, and it is easy to 
increase unnecessary computation. In this paper, the 
forgetting factor is introduced to weaken the influence of 
the old training samples. At the same time, based on the 
generalization ability, the output weights are selectively 
updated to improve the accuracy and speed of the 
algorithm.  

Based on the above discussion, according to the nonlinear 
and non-stationary characteristics of wind power series, a 
short-term combined prediction model of wind power based 
on empirical mode decomposition (EMD) and improved 
ELM is proposed in this paper. The fluctuations or trends of 
different scales in the wind power series are decomposed. 
Then, according to the characteristics of each component, 
different improved ELM models are established, and the 
most appropriate model is determined. Each component is 
predicted, and the prediction results of each component 
are superimposed to obtain the final wind power prediction 
value. Simulation results show that the prediction method 
proposed in this paper is effective. 

The main contents of this paper are as follows. Section 2 
introduces the preliminaries. Section 3 introduces the 
detailed implementation process of the proposed prediction 
method. The simulation results are provided in Section 4. 
The summary and prospects of the paper are summarized 
in Section 5.   

 
 

2. The Preliminaries 
 

2.1 The characteristics of wind power 
 
In this study, the actual wind power data from a wind 

power plant in Liaoning Province, China is chosen. The 
data sets have 2400 group data. The sampling period of 
data is 1 hour. The wind power time series is as shown in 
Fig. 1. In order to observe the details of the wind power 
sequence, the first 100 sets of data are displayed separately 
in Fig. 2. It can be observed from Fig. 1 and Fig. 2, the 
fluctuation of wind power series is more intense, and a 
large number of wind power values have risen sharply and 
drastically declined. At the same time, the wind power 
difference between the two adjacent sampling points is 
very large. Wind power presents stochastic, non-stationary 
and nonlinear characteristics. Therefore, wind power has a 
very high demand for the prediction performance of the 
prediction model. It is necessary to choose suitable 
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forecasting models and forecasting methods for wind 
power prediction. 

In order to analyze the characteristic of short-term wind 
power time series, this paper firstly analyzes the amplitude-
frequency characteristics of wind power. For the wind 
power time series, fast Fourier transform method is used to 
transform the time domain to the frequency domain, and 
the result of amplitude-frequency characteristic is shown in 
Fig. 3. 

Fig. 3 shows that short-term wind power time series 
have typical multi-time scale characteristics. The energy of 
short-term wind power time series is concentrated in the 
direct-current and low frequency parts (0 ~ 0.015 Hz). The 
energy of the high frequency part of the short-term wind 
power is very low. This means that the fluctuation 

information caused by external factors, or the periodic 
information of the wind power system itself, is contained 
in the short-term wind power sequence with different 
frequency variations.  

In order to further analyze the characteristics of short-
term wind power, the power spectrum density is used to 
analyze the sequence. The power spectrum density of 
short-term wind power is as shown in Fig. 4. 

It can be seen from Fig. 4, although the wind power is 
random, but based on the above analysis results, it can be 
determined that the wind power can be decomposed into 
many components with different frequency. At the same 
time, most of the wind power is slow change. The short-
term wind power signal is nonlinear and non-stationary. 
Some decomposition methods can reduce the non-
stationary of the signal and extract the information of 
different frequency signals. On this basis, combined 
prediction method can often improve the prediction effect. 
Therefore, the short-term wind power time series is 
processed first, and the components reflecting the different 
information of the sequence are resolved. Then, it is a 
feasible way to improve the prediction accuracy by 
establishing appropriate prediction models for different 
components. As a new target data analysis method, EMD 
is especially suitable for the decomposition and processing 
of nonlinear and non-stationary data. EMD adaptively 
decomposes the local feature information according to 
the signal itself, and does not need to set the parameters 
in advance, so it overcomes the problem of depending on 
the operator’s subjective experience. Therefore, EMD 
method is used to decompose the wind power signal into 
high frequency component and low frequency component. 
The different components of the high and low frequencies 
are predicted by the appropriate improved extreme 
learning machine model. This reduces the influence of the 
instability of the wind power sequence on the prediction 
accuracy. 

 
2.2 Empirical mode decomposition 

 
EMD is a new signal processing method proposed by 
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Fig. 1. Short-term wind power time series 
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Fig. 2. The first 100 sets of short-term wind power time 

series 
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Fig. 3. Amplitude-frequency characteristic of wind power 
time series 
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Fig. 4. The power spectrum density of short-term wind 

power time series 
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Huang et al in 1998 [27]. Its essence is to smooth the time 
series, decompose the original signal into several intrinsic 
mode functions (IMF), and determine the basic intrinsic 
characteristics of the effective signals in the data according 
to the experiences. It can more effectively reflect the 
distribution of energy on the space (or time) scale in the 
physics process [28]. Through EMD decomposition, each 
IMF component of non-stationary complex signals is 
stable. Therefore, EMD is an effective method for non-
stationary signal component decomposition. The low 
frequency component of IMF usually represents the 
original trend of signal. These IMFs need to meet the 
following conditions. 

1.  The number of extrema and the number of zero 
crossings must be equal or up to a difference of one. 

2. The mean value of the envelope defined by the local 
maximum and the local minimum of the signal is zero 
at any point. 

 
The main process of EMD is as follows. 
Step 1: The two envelope curves of x(t) are obtained by 

using two three spline curves of all maximum and 
minimum values of the original signal sequence. The mean 
value of two envelopes is calculated, which can be 
expressed as m(t). Let h(t)=x(t)-m(t). 

Step 2: If h(t) does not meet the requirements of the 
IMF, repeat Step 1 to calculate the new h(t). If h(t) 
satisfies the requirements of IMF, then h(t) is the first IMF 
of x(t), and the difference r(t) between x(t) and the IMF is 
obtained. 

Step 3: r(t) is used as the signal to be decomposed, and 
the process is repeated until the residual signal satisfies the 
given termination condition (r(t) is small enough or is a 
monotonic function). 

The final results of EMD can be expressed as. 
 

 
1

( ) ( ) ( )
n

i n
i

x t c t r t
=

= +å   (1) 

 
where, ( )ic t  is the ith IMF component, nr  is residual 
component. Therefore, empirical mode decomposition can 
decompose the original signal x(t) into the sum of n 
different frequencies of IMF and a trend item. 

 
2.3 Improved extreme learning machine  

 
The structure of ELM neural network algorithm is 

similar with the single-hidden layer feed forward neural 
networks (SLFNs). The different is ELM can randomly 
select its training parameters, and get a complete network 
training model only through the output weights obtained by 
the least squares method.  

For a given training set ( ){ }, | , , 1,...,n m
i i i iD i N= Î Î =x t x R t R , 

activation function f (x), the number of hidden nodes L. 
ELM regression model can be expressed as 
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where, , 1,...,i i L=a  is the output weights, , 1,...,ib i L=  
is bias, k is the numbers of the sample. Eq. (2) is rewritten 
as 
 
 k k k=T H β  (3) 

 
where kH  is a neuron matrix and can be represented as 
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kβ  is the output weights and can be expressed as 

 
 [ ]T1 2k kb b b=β L  (5) 

 
kT  is the output weights and can be expressed as 

 
 [ ]T1 2k kt t t=T L  (6) 

 
The output weights can be obtained by solving Eq. (3). 
 

 ( ) 1T T
k k k k k

-
=β H H H T  (7) 

 
Therefore, time series prediction model based on ELM 

can be obtained after training 
 

 ( )
1

L

i i i
i

t f bb
=

= +å a x  (8) 

 
However, ELM considers that the value of the new and 

old training samples is equal, and the equal weight of the 
training sample fails to highlight the role of the new 
training sample. Moreover, as soon as the new training 
samples are obtained, ELM updates the weights of the 
network. In order to solve this problem in ELM, this paper 
proposes an improved ELM with more effective sample 
updating mechanism. This paper considers that the new 
sample should be added to the training set after the initial 
network weights are calculated, and the corresponding 
network weights can be obtained on the basis of the initial 
network weights. At the same time, the new and old 
samples are given different weights. The effect of new 
training samples on the algorithm is further enhanced, 
which can further improve the regression prediction ability 
of ELM. The improved ELM algorithm can be described as 
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follows. 
Suppose that kβ  in Eq. (7) is calculated by sampling 

sample ( ) ( ) ( )1 1 2 2, , , , ,k kx t x t x tL . When new sample 
( )1 1,k k+ +x t  is added into set, then 1k+β  can be expressed 
as 

 

 

1

1
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where [ ]1 1 1 1 2 1 2 1( ) ( ) ( )k k k L k Lf b f b f b+ + + += + + +h a x a x a xL . 

T
k kH H  and T

k kH T  are given weights, the Eq. (9) can be 
rewritten as 

 
 T 1 T

1 1 1 1( ) ( )T
k k k k k k k ktm m-
+ + + += H + +β H h H T h   (10) 

 
where m , 0 1m< <  is weight coefficient. Let 
 
 T T 1

1 1 1( )k k k k km -
+ + += +P H H h h    (11) 

 
The inverse of Eq. (11) can be obtained 
 

 1 1 T
1 1 1k k k km- -
+ + += +P P h h    (12) 

 
Eq. (12) is substituted into Equation (10), the next can 

be obtained. 
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When a new sample 1kx +  is obtained, it is necessary to 

judge the change trend of the error. When the error value is 
greater than a threshold value e , kP  is updated, 
otherwise kP  remains unchanged. The update mechanism 
is shown in the following formula. 
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2

1

( ) /
N

ii
i

x x N
=

= -å $ , $ ix  is the predictive value 

of ix . 
To sum up, the implementation steps of improved ELM 

algorithm are as follows. 
Step 1: The embedding dimension m of data samples is 

determined. The initial N sample data is 1 2, , Nx x xL  is 
transformed into training sample set ( ) ( )1 1 2 2, , , ,x t x t L  
( ),k kx t . [ ]T1 1i i i i mx x x+ + -=x L  is chosen as input, 
i i mt x +=  is chosen as output. where k N m L= - > . 

Step 2: The initial output weight is calculated according 
to the next formula. 

 T
k k k k=β P H T       (15) 

 
Step 3:

T
1 1 2k k m k m kx x x+ - + - +é ùë û=x L is chosen as input, 

input vector 1k+h  is calculated. Then, one step prediction 
value of 1kx +   is obtained. 

 
 $

1 1k k kx + += h β   (16) 
 
Step 4: The matrix kP  is updated according to Eq. (14). 

Then, kβ  is updated according to Eq. (13). Let k=k+1. Go 
to Step 3. 

 
 
3. The Implementation Process of the Proposed 

Prediction Method 
 
Fig. 5 is the structure of wind power prediction method 

proposed in this paper. The input wind power time series is 
decomposed by EMD to generate n IMF components and a 
residual component. IMF components and residual 
component are used as input training sets to model 
improved ELM prediction model respectively. When the 
model is established, the wind power in the future can be 
predicted. In particular, one step prediction mechanism is 
adopted in this paper. 

The implementation process of the proposed prediction 
method can be described as the following. 

Step 1: The parameters are initialized. These parameters 
include maximum number of hidden layer nodes L, 
activation function f (x), embedding dimension of samples 
m, weight coefficient m , error threshold e  and etc. 

 

å

 
Fig. 5. The structure of wind power prediction method 

proposed in this paper 
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Step 2: The original wind power training sample time 
series is 1 2, , , kw w wL . It is decomposed by EMD, n 
IMF component and one residual component is obtained. 
The decomposed components can be expressed as 

1 2, , ,j jx x L  j
kx , 1, 2 , 1j n= +L , j represents the number of 

the components. 
T

1 1
j j j j
i i i i mx x x+ + -é ù= ë ûx L  is chosen as 

input, j j
i i mt x +=  is chosen as output. After training, n+1 

improved ELM prediction models can be obtained. 
Step 3: Suppose that the current sampling numbers of 

wind power time series are k, that is 1 2, , , kw w wL . 
1 2, , , kw w wL  is decomposed by EMD. The decomposed 

components can be expressed as 1 2, , ,j j j
kx x xL , 1, 2 ,j = L  

1n + , j represents the number of the components. 
T

1 1 2
j j j j
k k m k m kx x x+ - + - +é ù= ë ûx L  is chosen as input, then 

predictive value $ 1
j
kx +  is obtained. Each predictive value 

$
1

j
kx +  is added by the following Eq. (17), and then the final 

predictive value µ 1kw +  is obtained.  
 

 µ $ $ $1 2 1
1 1 1 1

n
k k k kw x x x

+
+ + + += + +L  (17) 

 
Step 4：Updating wind power input time series. 1w  is 

removed. µ 1kw +  is treated as the actual value and is inserted 
at the end of the wind power series. The length of wind 
power is still k. Go to Step 3, until the maximum prediction 
step is reached. 

 
 

4. Simulation 
 
The 2400 group wind power data is used as simulation 

data. The former 1920 group data is chosen as the training 
set. The latter 480 group data is chosen as the testing set. 
Through EMD, 1920 groups wind power data can be 
divided into 9 IMF components and 1 residual component. 
Fig. 6 shows the components after EMD decomposition. 
It can be seen from Fig. 6, except IMF 1, IMF 2 and IMF 
3, the change of other components is relatively stable. 
Decomposition reduces the interference and coupling 
between different characteristic information. Therefore, 
EMD reduces the difficulty of prediction modeling and 

improves the prediction accuracy. Fig. 7 shows the 
autocorrelation function of the original wind power time 
series. Fig. 8 shows the autocorrelation function of 
components after EMD decomposition. It can be seen from 
the Fig. 7 that the autocorrelation function of the original 
wind power time series has not been reduced to 0 in all 
time. However, the results in the Fig. 8 show that the 
autocorrelation function of each IMF component after EMD 
quickly attenuates to zero for the first time. It indicates that 
the IMF components after EMD decomposition have the 
short correlation property. EMD can reduce the self-
similarity of wind power time series. Compared with the 
long correlation model, the short correlation model has 
low complexity, so it can reduce the complexity of 
prediction after EMD processing. 

1920 group data of wind power after EMD decom-
position is used to model 10 improved ELM prediction 
models. The activation function is chosen as Sigmoid 
function. The data embedding dimension m is determined 
as 48. The number of neurons in the hidden layer L is set to 
100. The weight coefficient m  is set as 0.95. The threshold 
value e  is chosen as 0.2. Fig. 9 shows a comparison 
between the 480 groups of prediction value and the actual 
value of each IMF component and residual of the wind 
power time series after EMD process. The prediction 
values of each component are very close to the actual 
values. Each prediction model has a good prediction effect. 

Fig. 10 shows the root square mean error (RMSE) of 
each component. From the Fig. 10, it can be seen that with 
the increase of the order of each component, RMSE 
decreases rapidly and the prediction accuracy becomes 
higher. The reason is that the randomness of the sequence 
decreases with the increase of the order of IMF, so the 
accuracy of prediction is improved. 

When the prediction values of each component are 
obtained, the final prediction value of wind power can be 
obtained by superposition of the prediction values of 
each component. Fig. 11 gives the comparison of final 
prediction value and actual value of 480 groups wind 
power. 

In order to further verify the prediction accuracy, the 
proposed method is compared with echo state network in 
[12], ARMA in [16], SVM in [18], LSSVM in [19] and ELM 
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Fig. 7. The autocorrelation function of the original wind 

power time series 
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Fig. 6. The components after EMD decomposition (a: 
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in [25]. The parameters of echo state network are 
SR=0.622, N=126, IS=0.475, SD=0.173. The parameters 
of ARMA are p=8, q=6 by AIC criterion. The parameters 
of SVM are obtained by cross validation method in the 
SVM toolbox, that is e =42.368, C=9.636. The parameters 
of LSSVM are obtained by cross validation method in the 

LSSVM toolbox, that is g =24.268, 2s =11.361. The 
parameters of ELM are the number of hidden layer nodes 
is 48 obtained by the method of trial and error, activation 
functions of ELM is selected ass Sigmoid function with l  
is 1. Fig. 12 is the comparison curve between actual and 
prediction value of these prediction methods.  
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Fig. 8. The autocorrelation function of the componentsafter EMD decomposition (a: IMF1; b: IMF2; c: IMF3; d: IMF 4; e: 
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Fig. 10. Root square mean error of each component 
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Fig. 11. The comparison of final prediction value and 

actual value of 480 groups wind power 
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Fig. 12. The comparison curve between actual and 

prediction value of five prediction methods 
 
It can be observed from Fig. 11 and Fig. 12, the 

predictive effect of the prediction method in this paper is 
better than echo state network, ARMA, SVM, LSSVM, 

and ELM. 
Fig. 13 is the prediction error distribution histogram of 

the prediction methods mentioned in this paper. From Fig. 
13 can be known, because the prediction error is smaller 
and prediction error distribution is more uniform, the 
prediction effect and performance in this paper is better. 

In this paper, the next five performance indexes are 
adopted. These performance indexes include root mean 
square error (RMSE), mean absolute error (MAE), mean 
absolute percentage error (MAPE), reliability, and R 
Square. The definitions of these performance indexes are 
as follows. 
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where, N  is the length of wind power sequence, kw  is 
the actual value of wind power, µ kw  is the predictive 
value of wind power. (1 )ax -  is the numbers of confidence 
intervals in which the actual value falls under the 
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confidence level 1 a- , w  is the mean value of wind 
power. Fig. 14 gives RMSE comparison of the prediction 
methods mentioned in this paper. Fig. 15 gives MAE 
comparison of the prediction methods mentioned in this 
paper. Fig. 16 gives MAPE comparison of the prediction 
methods mentioned in this paper. From the performance 
indexes comparison results in Figs. 14 to 16, the prediction 
accuracy of the proposed prediction method is better than 

the others. 
Fig. 17 is the reliability and confidence distribution of 

the prediction methods mentioned in this paper. It can be 
observed from this graph that the prediction method in this 
paper has higher reliability under the same confidence 
level. It can be known that the reliability of wind power 
prediction method in this paper is better than other 
prediction methods. 

Table 1 gives RMSE, MAE, MAPE and R2 comparison 
of the prediction methods mentioned in this paper. From 
the performance indexes comparison results in Table 1, 
RMSE, MAE and MAPE of the proposed method is 
smaller than the other prediction methods. At the same 
time, R2 value of the proposed method is closer to 1 than 
the other prediction methods. The closer the value of R2 is 
to 1, the better the regression prediction performance of 
the model is. Therefore, the prediction accuracy of the 
proposed prediction method is better than the other 
methods. 

In summary, from the above prediction contrast curve 
and prediction error distribution, performance indexes and 
reliability, the proposed wind power prediction method is 
better than other prediction methods. The one main reason 
of prediction accuracy improvement is the introduction 
of EMD. After EMD processing, the wind power time 
series is changed from long correlation sequence to short 
correlation, which highlights the change rule of each 
component, so the prediction difficulty and complexity 
are both reduced. The other reason is that the improved 
ELM prediction model has better regression prediction 
performance compared with other models. 

 
 

5. Conclusion 
 
1. A short-term wind power prediction method based on 

EMD and improved ELM is proposed in this paper. EMD 
can decompose the real-scale fluctuation or trend of the 
same scale in wind power time series step by step, and 
smooth the non-linear and non-stationary characteristic of 
series. It produces a series of data sequences with the same 
characteristic scale. 

2. For each stationary sequence with approximate 
characteristics, the improved ELM prediction models are 
respectively established, so as to reduce the influence of 
nonlinearity and non-stationary on the wind power 
prediction results. 
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Fig. 14. RMSE comparison of the prediction methods 
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Fig. 15. MAE comparison of the prediction methods 
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Fig. 16. MAPE comparison of the prediction methods 
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Fig. 17. The reliability and confidence distribution of the 

prediction methods 

Table 1. Comparison of performance indicators 

Prediction methods RMSE MAE MAPE R Square 
Proposed method 0.8356 0.6817 0.0029 0.9933 

Echo state network 2.3511 2.0522 0.0195 0.9469 
ARMA 2.5869 2.2322 0.0058 0.9357 
SVM 2.1063 1.8150 0.0090 0.9574 

LSSVM 1.9830 1.7246 0.0124 0.9622 
ELM 1.8993 1.6447 0.0256 0.9654 

 



Short-term Wind Power Prediction Based on Empirical Mode Decomposition and Improved Extreme Learning Machine 

 1850 │ J Electr Eng Technol.2018; 13(5): 1841-1851 

3. The simulation results of actual wind power data show 
that the prediction method proposed in this paper can better 
track the change rules of wind power, and effectively 
improve the prediction accuracy of short-term wind power. 

4. In this paper, the future research work is to introduce 
more types of activation functions into improved ELM 
model, and find the better activation function which can 
improve the prediction accuracy. At the same time, the 
optimization of prediction parameters is further studied. 
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