• Title/Summary/Keyword: Time-series Model

Search Result 2,673, Processing Time 0.035 seconds

Application of an Automated Time Domain Reflectometry to Solute Transport Study at Field Scale: Transport Concept (시간영역 광전자파 분석기 (Automatic TDR System)를 이용한 오염물질의 거동에 관한 연구: 오염물질 운송개념)

  • Kim, Dong-Ju
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.713-724
    • /
    • 1996
  • The time-series resident solute concentrations, monitored at two field plots using the automated 144-channel TDR system by Kim (this issue), are used to investigate the dominant transport mechanism at field scale. Two models, based on contradictory assumptions for describing the solute transport in the vadose zone, are fitted to the measured mean breakthrough curves (BTCs): the deterministic one-dimensional convection-dispersion model (CDE) and the stochastic-convective lognormal transfer function model (CLT). In addition, moment analysis has been performed using the probability density functions (pdfs) of the travel time of resident concentration. Results of moment analysis have shown that the first and second time moments of resident pdf are larger than those of flux pdf. Based on the time moments, expressed in function of model parameters, variance and dispersion of resident solute travel times are derived. The relationship between variance or dispersion of solute travel time and depth has been found to be identical for both the time-series flux and resident concentrations. Based on these relationships, the two models have been tested. However, due to the significant variations of transport properties across depth, the test has led to unreliable results. Consequently, the model performance has been evaluated based on predictability of the time-series resident BTCs at other depths after calibration at the first depth. The evaluation of model predictability has resulted in a clear conclusion that for both experimental sites the CLT model gives more accurate prediction than the CDE model. This suggests that solute transport at natural field soils is more likely governed by a stream tube model concept with correlated flow than a complete mixing model. Poor prediction of CDE model is attributed to the underestimation of solute spreading and thus resulting in an overprediction of peak concentration.

  • PDF

The Prediction of Cryptocurrency on Using Text Mining and Deep Learning Techniques : Comparison of Korean and USA Market (텍스트 마이닝과 딥러닝을 활용한 암호화폐 가격 예측 : 한국과 미국시장 비교)

  • Won, Jonggwan;Hong, Taeho
    • Knowledge Management Research
    • /
    • v.22 no.2
    • /
    • pp.1-17
    • /
    • 2021
  • In this study, we predicted the bitcoin prices of Bithum and Coinbase, a leading exchange in Korea and USA, using ARIMA and Recurrent Neural Networks(RNNs). And we used news articles from each country to suggest a separated RNN model. The suggested model identifies the datasets based on the changing trend of prices in the training data, and then applies time series prediction technique(RNNs) to create multiple models. Then we used daily news data to create a term-based dictionary for each trend change point. We explored trend change points in the test data using the daily news keyword data of testset and term-based dictionary, and apply a matching model to produce prediction results. With this approach we obtained higher accuracy than the model which predicted price by applying just time series prediction technique. This study presents that the limitations of the time series prediction techniques could be overcome by exploring trend change points using news data and various time series prediction techniques with text mining techniques could be applied to improve the performance of the model in the further research.

Semi-Supervised Recursive Learning of Discriminative Mixture Models for Time-Series Classification

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.186-199
    • /
    • 2013
  • We pose pattern classification as a density estimation problem where we consider mixtures of generative models under partially labeled data setups. Unlike traditional approaches that estimate density everywhere in data space, we focus on the density along the decision boundary that can yield more discriminative models with superior classification performance. We extend our earlier work on the recursive estimation method for discriminative mixture models to semi-supervised learning setups where some of the data points lack class labels. Our model exploits the mixture structure in the functional gradient framework: it searches for the base mixture component model in a greedy fashion, maximizing the conditional class likelihoods for the labeled data and at the same time minimizing the uncertainty of class label prediction for unlabeled data points. The objective can be effectively imposed as individual mixture component learning on weighted data, hence our mixture learning typically becomes highly efficient for popular base generative models like Gaussians or hidden Markov models. Moreover, apart from the expectation-maximization algorithm, the proposed recursive estimation has several advantages including the lack of need for a pre-determined mixture order and robustness to the choice of initial parameters. We demonstrate the benefits of the proposed approach on a comprehensive set of evaluations consisting of diverse time-series classification problems in semi-supervised scenarios.

A Comparison Study of Forecasting Time Series Models for the Harmful Gas Emission (유해가스 배출량에 대한 시계열 예측 모형의 비교연구)

  • Jang, Moonsoo;Heo, Yoseob;Chung, Hyunsang;Park, Soyoung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.323-331
    • /
    • 2021
  • With global warming and pollution problems, accurate forecasting of the harmful gases would be an essential alarm in our life. In this paper, we forecast the emission of the five gases(SOx, NO2, NH3, H2S, CH4) using the time series model of ARIMA, the learning algorithms of Random forest, and LSTM. We find that the gas emission data depends on the short-term memory and behaves like a random walk. As a result, we compare the RMSE, MAE, and MAPE as the measure of the prediction performance under the same conditions given to three models. We find that ARIMA forecasts the gas emissions more precisely than the other two learning-based methods. Besides, the ARIMA model is more suitable for the real-time forecasts of gas emissions because it is faster for modeling than the two learning algorithms.

EMD based hybrid models to forecast the KOSPI (코스피 예측을 위한 EMD를 이용한 혼합 모형)

  • Kim, Hyowon;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.525-537
    • /
    • 2016
  • The paper considers a hybrid model to analyze and forecast time series data based on an empirical mode decomposition (EMD) that accommodates complex characteristics of time series such as nonstationarity and nonlinearity. We aggregate IMFs using the concept of cumulative energy to improve the interpretability of intrinsic mode functions (IMFs) from EMD. We forecast aggregated IMFs and residue with a hybrid model that combines the ARIMA model and an exponential smoothing method (ETS). The proposed method is applied to forecast KOSPI time series and is compared to traditional forecast models. Aggregated IMFs and residue provide a convenience to interpret the short, medium and long term dynamics of the KOSPI. It is also observed that the hybrid model with ARIMA and ETS is superior to traditional and other types of hybrid models.

Relationship among Degree of Time-delay, Input Variables, and Model Predictability in the Development Process of Non-linear Ecological Model in a River Ecosystem (비선형 시계열 하천생태모형 개발과정 중 시간지연단계와 입력변수, 모형 예측성 간 관계평가)

  • Jeong, Kwang-Seuk;Kim, Dong-Kyun;Yoon, Ju-Duk;La, Geung-Hwan;Kim, Hyun-Woo;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.161-167
    • /
    • 2010
  • In this study, we implemented an experimental approach of ecological model development in order to emphasize the importance of input variable selection with respect to time-delayed arrangement between input and output variables. Time-series modeling requires relevant input variable selection for the prediction of a specific output variable (e.g. density of a species). Inadequate variable utility for input often causes increase of model construction time and low efficiency of developed model when applied to real world representation. Therefore, for future prediction, researchers have to decide number of time-delay (e.g. months, weeks or days; t-n) to predict a certain phenomenon at current time t. We prepared a total of 3,900 equation models produced by Time-Series Optimized Genetic Programming (TSOGP) algorithm, for the prediction of monthly averaged density of a potamic phytoplankton species Stephanodiscus hantzschii, considering future prediction from 0- (no future prediction) to 12-months ahead (interval by 1 month; 300 equations per each month-delay). From the investigation of model structure, input variable selectivity was obviously affected by the time-delay arrangement, and the model predictability was related with the type of input variables. From the results, we can conclude that, although Machine Learning (ML) algorithms which have popularly been used in Ecological Informatics (EI) provide high performance in future prediction of ecological entities, the efficiency of models would be lowered unless relevant input variables are selectively used.

Estimation of Layered Periodic Autoregressive Moving Average Models (계층형 주기적 자기회귀 이동평균 모형의 추정)

  • Lee, Sung-Duck;Kim, Jung-Gun;Kim, Sun-Woo
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.507-516
    • /
    • 2012
  • We study time series models for seasonal time series data with a covariance structure that depends on time and the periodic autocorrelation at various lags $k$. In this paper, we introduce an ARMA model with periodically varying coefficients(PARMA) and analyze Arosa ozone data with a periodic correlation in the practical case study. Finally, we use a PARMA model and a seasonal ARIMA model for data analysis and show the performance of a PARMA model with a comparison to the SARIMA model.

A Study on Price Volatility and Properties of Time-series for the Tangerine Price in Jeju (제주지역 감귤가격의 시계열적 특성 및 가격변동성에 관한 연구)

  • Ko, Bong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.212-217
    • /
    • 2020
  • The purpose of this study was to analyze the volatility and properties of a time series for tangerine prices in Jeju using the GARCH model of Bollerslev(1986). First, it was found that the time series for the rate of change in tangerine prices had a thicker tail rather than a normal distribution. At a significance level of 1%, the Jarque-Bera statistic led to a rejection of the null hypothesis that the distribution of the time series for the rate of change in tangerine prices is normally distributed. Second, the correlation between the time series was high based on the Ljung-Box Q statistic, which was statistically verified through the ARCH-LM test. Third, the results of the GARCH(1,1) model estimation showed statistically significant results at a significance level of 1%, except for the constant of the mean equation. The persistence parameter value of the variance equation was estimated to be close to 1, which means that there is a high possibility that a similar level of volatility will be present in the future. Finally, it is expected that the results of this study can be used as basic data to optimize the government's tangerine supply and demand control policy.

A Feasibility Study on Bayesian Inference of Parameters of Weibull Distributions of Failures for Two Non-identical Components in Series System by using Discrete Time Approximation Method (이산 시간 접근 방법을 사용하는 2 개의 직렬계 비동일 부품 고장의 와이블 분포 모수의 베이시안 추정에 대한 타당성 조사)

  • Chung, In-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1144-1150
    • /
    • 2009
  • This paper investigates the feasibility of the Bayesian discrete time approximation method to estimate the parameters of Weibull distributions of failures for two non-identical components connected in series system. A Bayesian model based on the discrete time approximation method is formulated to infer the Weibull parameters of two non-identical components with the failure data of the virtual tests. The study of this paper comes to a conclusion that the method is feasible only for some special cases under the given constraints on the concerned parameters.