• Title/Summary/Keyword: Time-series Model

Search Result 2,673, Processing Time 0.032 seconds

Application of Statistical Models for Default Probability of Loans in Mortgage Companies

  • Jung, Jin-Whan
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.605-616
    • /
    • 2000
  • Three primary interests frequently raised by mortgage companies are introduced and the corresponding statistical approaches for the default probability in mortgage companies are examined. Statistical models considered in this paper are time series, logistic regression, decision tree, neural network, and discrete time models. Usage of the models is illustrated using an artificially modified data set and the corresponding models are evaluated in appropriate manners.

  • PDF

Analysis of the Music based on Time series (시계열을 이용한 음악의 해석)

  • 손세호;이중우;권순학
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.113-116
    • /
    • 2001
  • This paper describes an analysis of the music as a time series and the fuzzy logic-based modeling of it. All music is made up of a finite number of musical notations known as the musical symbols, such as clefs, staff, tine signature, notes, rests, etc. . The musical score uses musical symbols to present various characteristics, such as rhythm, melody, chord, etc,. for interpreting the music. In this paper, it is possible to transform the beat and pitch in the musical into time series from the viewpoint of recognizing beat and pitch of sounding tone at each time. On the basis of the identified features of the musical score, a musical score is represented as a time series and then is constructed to fuzzy logic-based model for predicting them. Examples are presented to illustrate the validity of the proposed method.

  • PDF

A Comparative Analysis of Forecasting Models and its Application (수요예측 모형의 비교분석과 적용)

  • 강영식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.44
    • /
    • pp.243-255
    • /
    • 1997
  • Forecasting the future values of an observed time series is an important problem in many areas, including economics, traffic engineering, production planning, sales forecasting, and stock control. The purpose of this paper is aimed to discover the more efficient forecasting model through the parameter estimation and residual analysis among the quantitative method such as Winters' exponential smoothing model, Box-Jenkins' model, and Kalman filtering model. The mean of the time series is assumed to be a linear combination of known functions. For a parameter estimation and residual analysis, Winters', Box-Jenkins' model use Statgrap and Timeslab software, and Kalman filtering utilizes Fortran language. Therefore, this paper can be used in real fields to obtain the most effective forecasting model.

  • PDF

Analysis of Time Series Models for Ozone at the Southern Part of Gyeonggi-Do in Korea (경기도 남부지역 지표오존농도의 시계열모형 연구)

  • Lee, Hoon-Ja
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.364-372
    • /
    • 2007
  • The ozone concentration is one of the important environmental issue for measurement of the atmospheric condition of the country. In this article, two time series ARE models, the direct ARE model and applied ARE model have been considered for analyzing the ozone data at southern part of the Gyeonggi-Do, Pyeongtaek, Osan and Suwon monitoring sites in Korea. The result shows that the direct ARE model is better suited for describing the ozone concentration in all three sites. In both of the ARE models, eight meteorological variables and four pollution variables are used as the explanatory variables. Also the high level of ozone data (over 80 ppb) have been analyzed at the Pyeongtaek, Osan and Suwon monitoring sites.

Forecast of Korea Defense Expenditures based on Time Series Models

  • Park, Kyung Ok;Jung, Hye-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.1
    • /
    • pp.31-40
    • /
    • 2015
  • This study proposes a mathematical model that can forecast national defense expenditures. The ongoing European debt crisis weighs heavily on markets; consequently, government spending in many countries will be constrained. However, a forecasting model to predict military spending is acutely needed for South Korea because security threats still exist and the estimation of military spending at a reasonable level is closely related to economic growth. This study establishes two models: an Auto-Regressive Moving Average model (ARIMA) based on past military expenditures and Transfer Function model with the Gross Domestic Product (GDP), exchange rate and consumer price index as input time series. The proposed models use defense spending data as of 2012 to create defense expenditure forecasts up to 2025.

Weekly maximum power demand forecasting using model in consideration of temperature estimation (기온예상치를 고려한 모델에 의한 주간최대전력수요예측)

  • 고희석;이충식;김종달;최종규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.511-516
    • /
    • 1996
  • In this paper, weekly maximum power demand forecasting method in consideration of temperature estimation using a time series model was presented. The method removing weekly, seasonal variations on the load and irregularities variation due to unknown factor was presented. The forecasting model that represent the relations between load and temperature which get a numeral expected temperature based on the past 30 years(1961~1990) temperature was constructed. Effect of holiday was removed by using a weekday change ratio, and irregularities variation was removed by using an autoregressive model. The results of load forecasting show the ability of the method in forecasting with good accuracy without suffering from the effect of seasons and holidays. Percentage error load forecasting of all seasons except summer was obtained below 2 percentage. (author). refs., figs., tabs.

  • PDF

Application of Volterra Series to Modeling an Elastomer Force-Displacement Relation (고무의 힘-변위 관계를 나타내는 모델링에의 볼테라 급수의 응용)

  • Sung, Dan-Keun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.71-78
    • /
    • 1989
  • The imput-output relations for nonlinear systems can be explicitly represented by the Volterra series and they can be characterized by the Volterra kernels. This study is concerned with modeling an elastomer force-displacement relation due to step inputs by utilizing the truncated Volterra series. Since it is practically impossible to apply step inputs that have infinite slope at zero time, the loads due to constant penetration(displacement) rate followed by constant penetration inputs are measured as an alternative approach and estimated for step inputs and then utilized for the truncated Volterra series models. One second order and one third order truncated Volterra series models have been employed to model the force-displacement relation which is one of the prominent properties to characterize the viscoelastic material. The third order truncated Volterra series model has better results, compared with those of the second order truncated Volterra series model.

  • PDF

Determining on Model-based Clusters of Time Series Data (시계열데이터의 모델기반 클러스터 결정)

  • Jeon, Jin-Ho;Lee, Gye-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.6
    • /
    • pp.22-30
    • /
    • 2007
  • Most real word systems such as world economy, stock market, and medical applications, contain a series of dynamic and complex phenomena. One of common methods to understand these systems is to build a model and analyze the behavior of the system. In this paper, we investigated methods for best clustering over time series data. As a first step for clustering, BIC (Bayesian Information Criterion) approximation is used to determine the number of clusters. A search technique to improve clustering efficiency is also suggested by analyzing the relationship between data size and BIC values. For clustering, two methods, model-based and similarity based methods, are analyzed and compared. A number of experiments have been performed to check its validity using real data(stock price). BIC approximation measure has been confirmed that it suggests best number of clusters through experiments provided that the number of data is relatively large. It is also confirmed that the model-based clustering produces more reliable clustering than similarity based ones.

A Modeling Methodology for Analysis of Dynamic Systems Using Heuristic Search and Design of Interface for CRM (휴리스틱 탐색을 통한 동적시스템 분석을 위한 모델링 방법과 CRM 위한 인터페이스 설계)

  • Jeon, Jin-Ho;Lee, Gye-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.179-187
    • /
    • 2009
  • Most real world systems contain a series of dynamic and complex phenomena. One of common methods to understand these systems is to build a model and analyze the behavior of them. A two-step methodology comprised of clustering and then model creation is proposed for the analysis on time series data. An interface is designed for CRM(Customer Relationship Management) that provides user with 1:1 customized information using system modeling. It was confirmed from experiments that better clustering would be derived from model based approach than similarity based one. Clustering is followed by model creation over the clustered groups, by which future direction of time series data movement could be predicted. The effectiveness of the method was validated by checking how similarly predicted values from the models move together with real data such as stock prices.

Forecasting Crop Yield Using Encoder-Decoder Model with Attention (Attention 기반 Encoder-Decoder 모델을 활용한작물의 생산량 예측)

  • Kang, Sooram;Cho, Kyungchul;Na, MyungHwan
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.4
    • /
    • pp.569-579
    • /
    • 2021
  • Purpose: The purpose of this study is the time series analysis for predicting the yield of crops applicable to each farm using environmental variables measured by smart farms cultivating tomato. In addition, it is intended to confirm the influence of environmental variables using a deep learning model that can be explained to some extent. Methods: A time series analysis was performed to predict production using environmental variables measured at 75 smart farms cultivating tomato in two periods. An LSTM-based encoder-decoder model was used for cases of several farms with similar length. In particular, Dual Attention Mechanism was applied to use environmental variables as exogenous variables and to confirm their influence. Results: As a result of the analysis, Dual Attention LSTM with a window size of 12 weeks showed the best predictive power. It was verified that the environmental variables has a similar effect on prediction through wieghtss extracted from the prediction model, and it was also verified that the previous time point has a greater effect than the time point close to the prediction point. Conclusion: It is expected that it will be possible to attempt various crops as a model that can be explained by supplementing the shortcomings of general deep learning model.