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Abstract

This study proposes a mathematical model that can forecast national defense expenditures. The ongoing
European debt crisis weighs heavily on markets; consequently, government spending in many countries will be
constrained. However, a forecasting model to predict military spending is acutely needed for South Korea be-
cause security threats still exist and the estimation of military spending at a reasonable level is closely related
to economic growth. This study establishes two models: an Auto-Regressive Moving Average model (ARIMA)
based on past military expenditures and Transfer Function model with the Gross Domestic Product (GDP), ex-
change rate and consumer price index as input time series. The proposed models use defense spending data as of
2012 to create defense expenditure forecasts up to 2025.

Keywords: Defense expenditures, GDP, exchange rate, Consumer price index, ARIMA model,
Transfer Function model.

1. Introduction

Military expenditures include any spending for the purpose of national security; consequently, they
are a necessary expense to generate public goods of ‘security’ (Baek et al., 2002). Spending is neces-
sary because it protects people and their property and because national security is related to economic
growth that it demonstrates a nation’ willingness to protect national interests. This is particularly
relevant in South Korea, a divided nation with an ongoing military confrontation between South and
North. The development of a forecasting model to predict defense expenditures is salient due to in-
ternal and external security factors such as the transfer of wartime operational control. High spending
on national defense is considered to weakens trade competitiveness and disperses investment with a
negative influence on economic growth (Mintz and Huang, 1990; Rothschild, 1973); however, Korea
has achieved a high rate of economic growth while maintaining high national defense spending (Chan
and Mintz, 2002). In this case, the threat of military confrontation between the two Koreas means that
a strong commitment to defending national security plays a critical role to boost the South Korean
economy. The correlation between Korea’s spending on national defense and its economic growth
rate supports the hypothesis of Aizenman and Glick (2006), which claims that defense expenditures
in the presence of threats have a positive impact on economic growth despite the direct negative impact
of military expenditures and security threats on economic growth (Chan and Mintz, 2002).

Factors that influence defense expenditures are largely categorized into economic conditions such
as fiscal capability and national security threats. A country’s existence would be at risk if defense
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spending were too low in the presence of security threats. Excessive spending on defense dispropor-
tionate to general economic circumstances would hamper economic growth. Economic conditions
have a stronger impact on Korean military expenditures than any other factor because the national
policy direction focuses on the growth of the economy (Korean Defense Ministry, 2006). Other is-
sues (such as security threats, the modernization of military facilities, and internal and external issues
in response to the transfer of wartime operational control) must also be considered when estimating
Korea’s defense expenditures.

An appropriate forecast defense spending model is important if the ongoing European sovereign-
debt crisis continues to make it impossible for the Korean government to increase spending. Current
studies have focused on choosing variables that affect the estimation of defense expenditures and how
to allocate them; however, economic conditions matter most when forecasting a country’s military
expenditures. This study suggests using an ARIMA model (Anderson, 1971; Box and Jenkins, 1976)
based on past defense expenditures and a Transfer Function model (William, 1996) with GDP, ex-
change rate and consumer price index as input variables to generate an appropriate military spending
forecasting model. Based on the estimates obtained from these models and other variables that affect
the forecast of military spending, security threats and economic conditions, it would be rational for
economic and military experts to revise forecasting methods to produce more reasonable forecasts.

This paper sees a sense of urgency to develop a mathematical model based on time series data
of past defense expenditures. This paper determines an appropriate forecast model that is mathe-
matically feasible and provides basic data to estimate defense expenditures. This study utilizes and
analyzes military spending data from 1970 to 2012 published by the Ministry of National Defense,
the Population Projection for Korea released by Statistics Korea, GDP, exchange rate and consumer
price index released by the Bank of Korea.

2. The Forecasts of Korea Defense Expenditures based on the Univariate Time
Series Model

The defense expenditure per person(z,) is a sequence of observations taken over time and it is needed
to investigate the stationary, trend, periodicity and autocorrelation before analyzing the defense ex-
penditure data.

The ARIMA model developed by Box and Jenkins (1976) assumes that the time series is station-
ary; therefore, raw data is transformed to defense expenditure per person to obtain stationary time
series that has a constant mean and a constant variance. It gradually increases over time and shows
that variance stabilization is needed through data transformation (Figure 1). We used square root
transformation in order to obtain data with constant variance.

Table 1 shows that since the p-values from a unit root test of +/z; are not significant, unit root
exists. If the presence of a unit root is not rejected, then one should apply the difference operator to
the series. After differencing, we consider ARIMA model. Figure 2 confirms that the first differenced
square root transformed data is stationary, with a constant mean and a constant variance. The three
types of parameters in the ARIMA(p, d, g) model are: the autoregressive parameter “p”, the number
of differencing passes “d”, and the moving average parameter “q”. In general, the parameters p and
q in the model can be identified based on the shape of the autocorrelation function (ACF) and partial
auto correlation function (PACF). Since ACF and PACF show that there is drastic decreasing after
time lag 1 from Figure 3, we start with an ARIMAC(I, 1, 1) model, then the ARIMA(1, 1, 0) model,
finally, the ARIMA(O, 1, 1) model. Table 2 compares two models having significant estimates using
Akaike Information Criterion(AIC) and Schwartz Bayesian Criterion(SBC). In Table 2, AIC and SBC
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Figure 1: Time series plot of z, (left) and +/z,(right)

Table 1: Unit root test of /z,

Model White noise AR(1) AR(2) AR(3)

p-value 0.994 0.967 0.959 0.945
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Figure 2: Time series plot of V +/z;

Table 2: AIC and SBC for the suggested models

Model AIC SBC
ARIMA(1, 1,0) 309.26 312.78
ARIMA(0, 1, 1) 309.89 313.41

choose the ARIMA(1, 1, 0) model as the best identified model.

Table 3 shows estimates and standard errors of parameter from the identified model. The estimates
are significant with p-values less than 0.05. After we verify the residuals are not autocorrelated and are
white noise, the identified ARIMA(1, 1,0) model is considered to be a proper model for forecasting.

Table 4 shows Portmanteau’s chi-square test to check the assumption that the residuals are a ran-
dom series such as white noise. We can conclude that the ARIMA(1, 1, 0) model is considered to be
proper because the p-value is adequate based on the autocorrelation diagnosis proposed in Table 4.

Following is the final ARIMA(1, 1, 0) model for +/z;, the square root transformed defense expen-
diture per person.

Vi = 11.05 + Vz 1 + 038 (Vari — Vaa) + €. 2.1

The correlation coefficient between the square root transformed defense expenditure per person of this
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Figure 3: ACF(left) and PACF(right) of V \/z;

Table 3: The parameter estimation of ARIMA(1, 1,0) model

Parameter Estimate Standard Error t-value P-value Lag
MU 17.82 2.10 8.49 <.0001
ARI,1 0.38 0.14 2.68 0.01 1

Table 4: The Portmanteau’s chi-square test of residuals

To Lag X’ DF P Autocorrelations
6 2.02 5 0.85 0.034 -0.017 -0.187 —0.005 —0.065 —-0.032
12 11.23 11 0.42 -0.276 —-0.059 —-0.144 —-0.026 0.108 0.219
18 18.77 17 0.34 —-0.135 0.054 0.133 0.096 0.181 —0.155
24 25.53 23 0.32 —0.145 —-0.004 0.015 —-0.131 —0.095 —-0.159

year and the square root transformed defense expenditure per person of last year is 0.38.

3. The Forecasts of Korea Defense Expenditures using the Transfer Function

Defense expenditure is affected by national financial affairs. Korea’s policy direction focuses on
growing the economy; consequently, economic conditions have a stronger impact on its military ex-
penditures than other factors (Aizenman and Glick, 2006). Therefore, we propose a Transfer Function
model that has GDP (g,), exchange rate(c;) and consumer price index(x,) as input time series variables,
and defense expenditure per person(z;) as the output time series variable. Transfer function model is
a statistical model describing the relationship between an output variable and one or more input vari-
ables. If input series X, ..., X, can be represented as an ARIMA(p, d, g) model, then we obtain the
transfer function model

k
w;s(B) b
Y=Y = BX;,+N,,
’ Zl S /(B)

where N, is a zero-mean stationary process, uncorrelated with {X;,,i = 1,...,k}, w;(B) = w;o —
wi B—---—w;B*and 6;,(B)=1-6;1B—---—6;,B".

The parameter b is time lag of input time series having first effects on output time series, s is time
lag enduring affects of output time series at time ¢ from input time series at time # — b and r is the
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Figure 4: Time series plot of GDP(KRW)(left) and Time series plot of the cube root transformed
GDP(KRW)(right)
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Figure 5: Time series plot of the first differenced cube root transformed GDP V </g;

parameter representing the relation between after input time series at time # — b — s and output time
series at time ¢. It predicts future values of a time series based on past time series values and on the
values of one or more time series related to the time series to be predicted. Our purpose in using the
Transfer Function model is to improve the one-variable time series model by analyzing the dynamic
relation between input time series data and output time series data. Before setting a transfer function
model, the input-output data are first transformed to stationary data, and the ARIMA(p, d, g) model
for input data and output data are found through the prewhitening procedure which changes the input
(output) data into white noise beforehand. In order to apply the prewhitening procedure, it is first
necessary to investigate the time series plot of GDP. The increase gradually becomes larger as time
goes by in Figure 4 (left), so the variance can be stabilized by a cube root transformation of data. The
cube root transformed GDP has a trend factor from Figure 4 (right), and it can be removed from first
order differencing.

Figure 5 verifies that the data is transformed into an approximately stationary time series which
has a constant mean. We choose ARIMA(1, 1, 1) as the fitted model since the ACF and PACF for
first order differencing GDP after cube root transforming show a spike at time lag 1 in Figure 6. All
estimates in Table 5 are significant, and because p-value of Portmanteau’s chi-square test is large
enough so that the hypothesis “The autocorrelation is equal to zero” cannot be rejected in every time
lag as a results of autocorrelation diagnosis of residuals from Table 6.

We can verify that the ARIMAC(1, 1, 1) model of the cube root transformed GDP is suitable since
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Figure 6: ACF and PACF of V /g,

Table 5: The parameter estimation of ARIMA(1, 1, 1) model

Parameter Estimate Standard Error t-value P-value Lag
MAL,I 0.672 0.130 5.18 <.0001 1
AR1,1 0.990 0.018 55.24 <.0001 1

Table 6: The Portmanteau’s chi-square test of residuals
7

To Lag X DF P Autocorrelations
6 1.52 4 0.824 0.084 —-0.056 0.068 —-0.083 0.093 -0.035
12 3.04 10 0.981 —-0.007 0.013 —-0.004 —-0.068 0.042 —-0.136
18 11.24 16 0.795 0.118 0.191 0.071 0.236 —-0.050 -0.074
24 13.13 22 0.930 0.047 0.021 —-0.031 —-0.103 0.010 —-0.076

the ACF and PACF of residuals are all included in twice of standard error.

Figure 7 shows that the exchange rate (c;) and consumer price index (x;) have to be transformed
into the stationary time series by an appropriate transformation. The variance of ¢, is stabilized by
root transformation and then we consider the difference in the transformed data +/c,. By inspecting
the ACF and PACF of V v/c;, we choose the white noise as the fitted model. Figure 7(right) shows
that since the increase gradually becomes larger as time goes by, we can eliminate the trend by first
order differencing; consequently, Vx; is transformed into an approximately stationary time series. By
inspecting the ACF and PACF, we choose the ARIMA(1, 1, 1) model as the fitted model of Vx;.

The parameters (b, s, r) of the Transfer Function model should be decided through cross covari-
ance and cross correlation after fitting the same model to the square root of defense expenditures per
person which is the output time series data. First, we consider GDP (g;). The cross correlation be-
tween V 4/z; and V v/g; can be decided to be 0 in negative time lag, which means it is reasonable to use
the first order differencing GDP data after square root transforming as the input time series variable
of our Transfer Function model. We determine that the parameters (b, s, r) are (1,0,0) or (1,0, 1)
since the cross correlations between V v/z; and V /g; are significant at time lag 1 and not significant
after time lag 1 and display a cutoff. Second, we consider exchange rate (c;). The cross correlations
between V 4/z, and V +/c; are significant at time lag 1 and 2 and cut off after lag 2. Thus, we determine
that the parameters (b, s, r) are (1, 1,0) or (1, 1, 1). Finally, we consider consumer price index (x;). By
inspecting the cross correlations between V vz, and Vx;, since cross correlations are not significant
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Figure 7: Time series plot of the exchange rate ¢, (left) and consumer price index x, (right)

Table 7: The maximum likelihood estimation for final model

Input variable TF model estimate Standard Error t-value P-value
v /g (1,0,0) 2.34 0.638 3.67 0.0002
Vx; (0,0,0) 2.54 1.209 2.10 0.0360

Table 8: The Portmanteau’s chi-square test of residuals

To Lag X2 DF P Autocorrelations
6 6.54 6 0.366 0.229 0.267 0.075 —-0.022 —0.003 -0.119
12 9.67 12 0.645 —-0.149 —-0.077 —-0.104 —-0.021 —-0.124 0.051
18 14.90 18 0.669 -0.161 —-0.082 —-0.096 —-0.096 0.044 -0.151
24 24.09 24 0.456 0.073 —-0.037 —-0.039 —-0.162 —-0.174 -0.174

and cut off after lag 0, we decide that the parameters (b, s, r) are (0,0, 0) or (0,0, 1).

We must search the most satisfactory Transfer Function model with significant independent vari-
ables and parameters using parameters of the Transfer Function model to the input variables V +/g;,
V 4/c; and Vx,. We can test eight models using the parameters identified above. From results of
maximum likelihood estimation to eight models, we choose significant transfer function models
V +/g:(1,0,0) and Vx,(0,0,0) at level of significance 0.1. Table 7 shows the maximum likelihood
estimation for the selected final model with input variables of GDP and consumer price index and an
output variable of defense expenditure.

After deciding the parameters of the Transfer Function model, it is necessary to estimate the
model for noise series of the Transfer Function model based on the residual series of the model. Table
8 shows estimates and standard errors of parameter from the final Transfer Function model for noise
series. In Table 8, the p-value of Portmanteau’s chi-square test for verification of autocorrelation of
residual series is satisfactory that the null hypothesis, “There is no correlation”, cannot be rejected,
which shows this residual series is a random series such as white noise. Hence, the final Transfer
Function model is a good fitted model.

The cross-correlations of the final residuals and prewhitened input time series in Table 9 and
Table 10 suggest that both series are independent. The hypothesis “The cross-correlation is equal to
0” cannot be rejected since the p-values of both series are adequate.

From Table 7, Transfer Function model is derived as follows:

Wsl(B) bl WSZ(B) b2
\Y4 = —B"vV ————B*vV y 3.1
Va=56) V&t 5.(B) nre -1
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Table 9: Cross-correlation Check of Residuals with input +/g;

To Lag X? DF P Autocorrelations
5 2.46 5 0.782 0.016 0.192 -0.037 -0.121 0.092 -0.007
11 11.83 11 0.376 —-0.196 —-0.301 -0.171 —-0.146 -0.230 0.038
17 14.30 17 0.646 0.142 0.137 0.028 0.061 0.010 0.135
23 17.81 23 0.768 0.066 -0.173 0.007 -0.124 -0.117 —-0.157

Table 10: Cross-correlation Check of Residuals with input x,

To Lag X’ DF P Autocorrelations
5 5.10 5 0.40 0.013 0.220 0.028 —-0.208 -0.170 —-0.052
11 9.39 11 0.59 0.076 0.055 —-0.035 —-0.026 -0.272 0.142
17 12.29 17 0.78 -0.026 —-0.047 0.046 0.082 0.216 0.111
23 16.79 23 0.82 —-0.003 0.025 —-0.144 —0.062 —0.164 —-0.240

where b1 = 1,51 =0,r1 =0,62=0,52 =0and r2 = 0.
Finally, the following model can be constructed using the estimates in Table 7.

Vo = Vaer + 234 (Rt — ¥8im2) + 254 (Vi — V) + 6. (3.2)

As a result, defense expenditure can be estimated from the above formula.

4. Forecasting

After fitting a model, we estimate a future value at time n based on the fitted model, while the actual
value is unknown. We proposed the forecasts for the defense expenditure constructed by the ARIMA
model and the Transfer Function model. We let the forecasted value w,(I) of +/z; at time ¢ = n+I. For
the ARIMA model, we use the following equation to calculate the values of the forecast:

will) =+ ¢ (Ven = 1)

From the equation (2.1) of the fitted ARIMA model, 1 = 17.82, ¢; = 0.38 and 6> = 74.08. We

can also obtain the standard error from the equation \/6'2[1 +(d1 — 02/ - (i&%)]. The forecasts can
be obtained by iterating recursion for equation (3.2) of the fitted transfer function model. The final
forecasts of defense expenditures are obtained by multiplying the forecasted defense expenditure by
the population of Korea. Table 11 shows the forecasts and standard errors of defense expenditures
up to 2025. Based on our final fitted models and Korea’s projected population from the National
Statistical Office, we can predict that defense expenditures in 2025 will reach 48667.334 billion KRW.

AIC, SBC and MSE are model selection criteria and the best model is the model that minimizes
that criterion. Table 12 shows that the Transfer Function model is an appropriate model for the defense
expenditure since AIC, SBC and MSE values achieved in the Transfer Function model are smaller than
those achieved in the ARIMA model.

5. Concluding Remarks

This paper proposed forecasting time series models for Korean defense expenditures using an ARIMA
model based on past defense expenditures and a Transfer Function model with GDP, exchange rate
and consumer price index as input time series. We omitted some complex formulas and intermediate
results for the sake of simplicity. We can see that the Transfer Function model is an appropriate model
for defense expenditures, since AIC, SBC and MSE values achieved in the Transfer Function model
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Table 11: The actual value and forecasts of the defense expenditure (Unit is one hundred - million KRW and
standard error is given in parenthesis.)

39

Year Actual value Arima model residual TF model Residual
1972 1738 2048.07 (24.82) -310.07 1692.62 (23.76) -45.38
1973 1843 2525.81 (25.26) —682.81 2080.82 (24.18) 237.82
1974 2910 2510.10 (25.70) 399.90 2520.41 (24.60) -389.59
1975 4588 4230.71 (26.14) 357.29 4144.26 (25.02) —443.74
1976 7327 6402.23 (26.56) 924.77 5913.67 (25.42) —1413.33
1977 9626 9919.77 (26.97) -293.77 9154.22 (25.82) -471.78
1978 12223 12126.29 (27.39) 96.71 11759.77 (26.22) —463.23
1979 15366 15043.59 (27.80) 322.41 15497.76 (26.62) 131.76
1980 22465 18651.38 (28.24) 3813.62 19976.29 (27.03) —2488.71
1981 26979 28073.30 (28.69) —1094.30 27583.40 (27.46) 604.40
1982 31207 31513.18 (29.13) -306.18 31508.74 (27.89) 301.74
1983 32741 35797.82 (29.57) -3056.82 34314.00 (28.30) 1573.00
1984 33061 36173.76 (29.93) -3112.76 36142.07 (28.65) 3081.07
1985 36892 35964.39 (30.23) 927.61 36168.02 (28.94) -723.98
1986 41580 41488.20 (30.53) 91.80 39937.96 (29.23) —1642.04
1987 47454 46742.86 (30.83) 711.14 45951.69 (29.52) -1502.31
1988 55202 53367.08 (31.14) 1834.92 53643.52 (29.81) —1558.48
1989 60148 62231.10 (31.45) —-2803.10 62228.33 (30.10) 2080.33
1990 66378 66139.10 (31.76) 238.90 67276.22 (30.40) 898.22
1991 74764 73146.07 (32.07) 1617.93 76980.87 (30.70) 2216.87
1992 84100 82782.40 (32.41) 1317.60 85548.42 (31.02) 1448.42
1993 92154 92794.77 (32.74) -640.77 92959.59 (31.34) 805.59
1994 100753 100554.09 (33.07) 198.91 102370.98 (31.66) 1617.98
1995 110743 109656.02 (33.40) 1086.98 112668.48 (31.98) 1925.48
1996 122434 120470.78 (33.72) 1963.22 124152.68 (32.28) 1718.68
1997 137865 133216.20 (34.04) 4648.80 134356.78 (32.59) —3508.22
1998 138000 150333.41 (34.29) —-12333.41 151807.33 (32.82) 13807.33
1999 137490 144287.13 (34.53) -6797.13 139016.41 (33.06) 1526.41
2000 144774 143715.94 (34.82) 1058.06 147187.43 (33.34) 2413.43
2001 153884 154131.10 (35.08) —247.10 156936.89 (33.58) 3052.89
2002 163640 163983.21 (35.28) -343.21 163765.12 (33.77) 125.12
2003 175148 174237.35 (35.45) 910.65 176974.49 (33.94) 1826.49
2004 189412 186534.32 (35.59) 2877.68 185772.85 (34.07) -3639.15
2005 211026 201960.83 (35.66) 9065.17 200554.36 (34.14) —10471.64
2006 225129 227775.31 (35.83) -2646.31 219874.85 (34.30) —5254.15
2007 244972 238751.04 (36.00) 6220.96 235275.59 (34.46) -9696.41
2008 266490 262017.93 (36.26) 4472.07 262489.58 (34.71) —4000.42
2009 289803 283728.73 (36.43) 6074.27 278945.66 (34.88) —10857.34
2010 295627 308399.94 (36.60) —12772.94 301543.75 (35.04) 5916.75
2011 314031 308114.35 (36.88) 5916.65 319011.48 (35.30) 4980.48
2012 329576 330682.07 (37.04) -1106.07 327455.38 (35.46) -2120.62
2013 344970 345612.61 (37.20) -642.61 340648.36 (40.66) 4321.64
2014 361148.67 (37.35) . 354283.63 (98.20) .
2015 377851.78 (109.35) 367790.70 (173.53)

2016 394992.40 (198.07) 381177.15 (270.93)

2017 412522.43 (294.06) 394430.61 (394.17)

2018 430406.65 (393.28) 407529.58 (546.61)

2019 448629.59 (494.04) 420463.80 (731.17)

2020 467180.06 (595.66) 433224.67 (950.45)

2021 486051.62 (697.85) 445807.56 (1206.69)

2022 505226.63 (800.42) 458197.93 (1501.83)

2023 524677.65 (903.24) 470373.46 (1837.47)

2024 544436.62 (1006.31) 482365.88 (2215.18)

2025 564469.42 (1109.51) 494148.06 (2636.07)
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Table 12: AIC, SBC and MSE for ARIMA and Transfer Function model.

Model AIC SBC MSE
ARIMA 309.26 312.78 74.78
Transfer function 293.02 296.45 70.91

are smaller than those achieved in the ARIMA model. The forecasting accuracy improved with the
Transfer Function model. We verified that the proposed forecasting models are mathematically fea-
sible to help provide basic data to estimate defense expenditures. We would like to also compare the
trend of national defense expenditures on the two Koreas, but we cannot obtain proper data. GARCH
models account for certain characteristics such as Volatility that are commonly associated with finan-
cial time series; therefore, it is not considered an alternative model. In the next study, we will analyze
national defense expenditures compared to the GDP of Korea and neighboring nations (China, Russia
and Japan) and will consider other time series models such GARCH models.
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