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Application of Volterra Series to Modeling an Elastomer

Force-Displacement Relation
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Abstract

The input-output relations for nonlinear systems can be explicitly represented by the Volterra
series and they can be characterized by the Volterra kernels. This study is concerned with modeling
an elastomer force-displacement relation due to step inputs by utilizing the truncated Volterra
series. Since it is practically impossible to apply step inputs that have infinite slope at zero time,
the loads due to constant penetration (displacement) rate followed by constant penetration inputs
are measured as an alternative approach and estimated for step inputs and then utilized for the
truncated Volterra series models. One second order and one third order truncated Volterra
series models have been employed to model the force-displacement relation which is one of the
prominent properties to characterize the viscoelastic material. The third order truncated
Volterra series model has better results, compared with those of the second order truncated Volterra
series model.
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functionals which are analytic, the Volterra series
has been applied in the wide range of nonlinear/
bilinear systems such as, communications{2],
circuits[3,4,5,6], viscoelastic material[7,8], iden-
tification[9], and mechanical systems[10]. The
input-output relations for nonlinear analytic
systems can be explicitly represented by the
Volterra series and they can be characterized by
the Volterra kernels. If the systems are not
strongly nonlinear, they can be approximated by
the truncated Volterra series.

Elastomers are viscoelastic polymers capable
of undergoing reversible deformations. One of
the most important characteristics of elastomers
is the dependence of their mechanical properties
on time. If an elastomer sample is constrained
at constant deformation (strain), then the stress
required to maintain that strain decreases with
time. This phenomenon is known as stress
relax ation.

So far several investigators[11,12,13] have
made attempts to model viscoelastic constitutive
relations by utilizing the Volterra series represent-
ations for step inputs. However, they have not
applied pure step inputs to the material, because
it is practically impossible to apply pure step
inputs that have infinite slope at zero time. If the
short time responses are of particularly interest,
then we may not neglect the transient responses
due to inaccurate step inputs. As an alternative
approach we use combined inputs with constant
penetration rate followed by constant penetration
inputs and then estimate the responses due to pure
step inputs from the obtained results due to
combined inputs.

This study is concerned with modeling an
elastomer force-displacement relation due to step
inputs by utilizing the truncated Volterra series.
In chapter 2, the Volterra series and multiple
integral representations are compared and some
erroneous treatments of kernels in the material
science field are also discussed. In chapter 3, one
elastomer constitutive relation is represented by
the one-dimensional Volterra series model. In
chapter 4, the force-displacement relations are
modeled by one second order and one third order
truncated Volterra series models, and they are
analyzed for step inputs.

II. Volterra Series Representations Versus
Multiple Integral Representations

1989%F 68 BT ILEERLE

(869)

2% £ 68

The input-output relations for nonlinear time-
invariant analytic systems can be explicitly
represented by the Volterra series with the follow-
ing form:

y () =EHLx(1)], (1)

where

hn(th tb "ty tn)

0

x(t—t,) - -x (t—tn) dt,+~dt,.

H,, is called the n-th order Volterra operator and
Hn[x(t)] is expressed as an n-dimensional gener-
alized convolution integral containing the n-th
order kernel multiplied by an n-th order product
of the forcing functions. The n-th order Volterra
kernel is denoted by h, (t;, tz, ..., t;) and is
also called the generalized impulse response. In
particular, the linear systems can be characterized
only by the first order Volterra kernels. The
above input-output relation is called the Volterra
series representation in the electrical engineering
field.

In the material science field, one constitutive
relation can be described by

o (1) =5Ga (¢ ()], (2)

where

Gl i @)= [ [ gttt i@

+++€ (ta) dtir-dta.

The stress, strain rate, and stress relaxation
function are denoted by o(t), é(t), and gntty, .,
t-tn), respectively. This input-output relation is
called the multiple integral representation.

Both representations (1) and (2) are equivalent
and have the same historical origin. However,
they have been developed differently and indepen-
dently in the above mentioned electrical engineer-
ing and material science fields. There have been
several erroneous treatments of kernels in the
multiple integral representations. Several investig-
ators made attempts to find the high order kernels
after assuming particularly convenient forms for
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the estimation of the kernel functions. However,
most assumptions appear to be inappropriately
restrictive and they give rise to erroneous results,
For example, Gottenberg et al{ 8] assumed special
forms of the kernel functions in which the argu-
ment of these functions are taken in additive
form, i.e.

T (t—ty, t—

ta, oo, t— ) = fi (kt—ti—ty—r-—ty)

(3)

and Stafford[ 11] assumed a ‘“separable’ form

T (ts, ta, ootn) =E0 (1) 12 (22) £ (tn) . (4)

Both of these assumptions for the forms of the
kernels are without any basis other than compu-
tational convenience and the studies employing
them appear to exhibit poor results in terms of
model verification with experiments,

II. Representation of an Elastomer

Constitutive Relation
Consider an isotropic, homogeneous, and
nonaging elastomer material under isothermal

conditions. The linear constitutive equation for
the viscoelastic material can be written as[14]
11

o= [ gt (5)
where the function g;(t—t,) is called the stress
relaxation function and &(t) is the strain history.
The principle of superposition is valid in this linear
model.

The general constitutive equation for nonlinear
viscoelastic material was originally proposed by
Green and Rivlin[15]. For the case of one-dimen-
sional deformation the constitutive equation is
given as[ 14]

a(t) =f g (t—ty) € (t1) dt,

t t
+_/ / g {t—t, t—ts) € (1) € (1) dt,dts

t t t
+ff/g:(t“tx,t_tz,t~ts)

£(ty) € (ta) € (ts) dtadtodtet--, (6)

where the integrating functions g, (t—t;),
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gy (t—ty,t—ty) and ga(t—t;,t—t,,t—t3) are called
the stress relaxation functions. This is a Volterra
series representation between the stress and the
strain rate. If there exits only one stress relaxation
function g,, then the material exhibits linear
behavior. In the case of nonlinear material, higher
order stress relaxation functions, ie. higher
order Volterra kernals, are additionally needed to
represent the input-output relation. Thus, the
above relation may be a general representation
which describes nonlinear viscoelastic behavior.

IV. Modeling and Analysis of an Elastomer
Force-Displacement Relation

We now consider an estimation of stress relaxa-
tion function due to pure step inputs by using the
experimental data from the Instron Tester on the
UPJOHN’S Urethane Elastomer sample. Since it
is practically impossible to apply step inputs that
have infinite slope at zero time, we use an
alternative approach. Suppose that we apply a
combined input, i.e. constant strain rate followed
by a constant strain input shown in Fig.1. The
basic assumption is that the estimated stress,
o(t), due to a stress applied stepwise at zero time
converges to the response due to a constant strain
rate and constant strain input for t >qt* [16,17].

Since experimental data from the Instron
Tester are obtained in terms of force displace-
ment, we use the force-displacement relation
instead of stress-strain relation. Eqn(6) can be
rewritten as

f(t) zltll {t—t1) x(t2) dt,

t t
+f [lz(tvtl,t-tz)i(tl))i(tz)dt,dtz
[ []

t 1 t
+ff ] ls(t—1ty, t—tg t—ts)
(] 0 (1]

X'(tt)x.(tz)x‘(tﬂ +--, (7)

where all initial times are assumed to be 0 (zero)
and 1;, I,, and 13 are Volterra kernels characteriz-
ing the input-output relation.

Eight indentation test inputs for the Urethane
elastomer sample with a 0.9525 c¢m radius penetr-
ator are shown in Fig.2. We use log f(t)-log t
plot in order to fit the estimated f(t) to displace-
ment applied stepwise at zero time, because it
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Fig.2. Indentation test inputs.

is easy to figure out the trend of curve. One log
f(t)-log t plot is shown in Fig.3. From this plot,
we can obtain the estimated relation.
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logf (t) = 0. 089logt + 2. 368. (8)

The above equation is rewritten as

f (1) =233. 44¢7°°*, (9)

Similarily, we can estimate other forces due to
diffierent displacements applied stepwise at zero
time.

We now consider the second order truncated
Volterra series model.

() ='[th1 (t—t,) x{t,) dy,

+jt/n‘hz(t~t,,t—tz)i(t,)i(t,)dt,dth
(10)

where h; and h, are the first and second order
Volterra kernels, respectively. Suppose that we
have two input-output sets (force-displacement),
f1(t)x,(t) and f,(t)x,(t). Let

xi(t) =ault) (11)

x: (t) =au(t), {12)
where u(t) is a step function. Substituting x,(t)
and x,(t) into eqn (10), and solving two algebraic
equations far hy (t) and h,(t,t), we can obtain two
Volterra kernels,

_ a3fa (1) —aif, (1)
N a8, (az_al)

h (t)

_ al, (t) —a.f, (t)
B a,a; (az_"al)

hy (t, t) (14)

For the second order truncated Volterra series
form, we use two deata sets, ie. fy(t) and f3(t),
and estimate hy(t) and h3(t;t). In order to verify
these two kernels, we apply two step inputs,
x2(t) and xg(t) shown in Fig.2 and estimated
outputs, fz(t) and fg(t). These estimated
outputs calculated using the kernels h;(t) and
h,(t,t), and the corresponding kernels are shown
in Fig4 and Fig.5, respectively, The maximum
error here is about 95.%.

We now extend the previous model to the third
order truncated Volterra series model with the
following form:
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ha(t, U =la {f2()ai—adfa (1)) — £, (t) {a:ai—alas)
+a}(a,f; (t) —asf,(t)) ] /det (20)

hy (, t, t) =l a, (a3fs (1) —aif, (1)) —

al (a.fs(t) —asf. (1))
+1£,(1) (asai—ajas) | /det, (21)

where

. ( 2 2 2] 2 2 2\
det arazdz @7 —az83 adidz 1T aidz I aqdy a1dz/.

For the third order truncated Volterra series
model, we need three input-output data sets to
estimate h;(t), h,(t,t) and h;(t,t,t). We assume
that three data sets are f;(t)-x,(t), f3(t)x3(t),
and fg(t)x5(t). We now want to estimate f5(t),
fe(t) and fg(t) due to step inputs, x,(t), Xg(1),
x4(t) and xg(t), respectively. Compared with the
results for the second order truncated Volterra
series model, the estimated outputs have better
results as expected. The estimated outputs and
kernels are shown in Fig.6 and Fig.7, respectively.
The maximum error here is about 6.4%. Thus the
third order Volterra series model has better
results, compared with those of the second order
Volterra series model.
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V. Conclusion

The input-output relations for nonlinear
systems can be explicitly represented by the
Volterra series and they can be characterized by
the Volterra kernels. If the systems are not
strongly nonlinear, they can be approximated by
the truncated Volterra series solutions with only
a few low order terms. The second order and third
order truncated Volterra series models have been
employed to estimate the force-displacement
relation due to step inputs, which is one of the
prominent properties to characterize the viscoel-
astic material. Actual experimental data from
the Instron Tester are obtained for combined
inputs, i.e. constant penetration rate followed by
constant penetration inputs. These data are then
estimated for step inputs and utilized for the
trancated Volterra series models. The third order
Volterra series model has better results, compared
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with

those of the second order Volterra series

model. This approach may be applied to modeling
other elastomer constitutive relations including
creep phenomena,
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