• Title/Summary/Keyword: Time-series Model

Search Result 2,673, Processing Time 0.042 seconds

Detecting Anomalies in Time-Series Data using Unsupervised Learning and Analysis on Infrequent Signatures

  • Bian, Xingchao
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1011-1016
    • /
    • 2020
  • We propose a framework called Stacked Gated Recurrent Unit - Infrequent Residual Analysis (SG-IRA) that detects anomalies in time-series data that can be trained on streams of raw sensor data without any pre-labeled dataset. To enable such unsupervised learning, SG-IRA includes an estimation model that uses a stacked Gated Recurrent Unit (GRU) structure and an analysis method that detects anomalies based on the difference between the estimated value and the actual measurement (residual). SG-IRA's residual analysis method dynamically adapts the detection threshold from the population using frequency analysis, unlike the baseline model that relies on a constant threshold. In this paper, SG-IRA is evaluated using the industrial control systems (ICS) datasets. SG-IRA improves the detection performance (F1 score) by 5.9% compared to the baseline model.

Degradation Prediction and Analysis of Lithium-ion Battery using the S-ARIMA Model with Seasonality based on Time Series Models (시계열 모델 기반의 계절성에 특화된 S-ARIMA 모델을 사용한 리튬이온 배터리의 노화 예측 및 분석)

  • Kim, Seungwoo;Lee, Pyeong-Yeon;Kwon, Sanguk;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.316-324
    • /
    • 2022
  • This paper uses seasonal auto-regressive integrated moving average (S-ARIMA), which is efficient in seasonality between time-series models, to predict the degradation tendency for lithium-ion batteries and study a method for improving the predictive performance. The proposed method analyzes the degradation tendency and extracted factors through an electrical characteristic experiment of lithium-ion batteries, and verifies whether time-series data are suitable for the S-ARIMA model through several statistical analysis techniques. Finally, prediction of battery aging is performed through S-ARIMA, and performance of the model is verified through error comparison of predictions through mean absolute error.

A Laplacian Autoregressive Time Series Model

  • Son, Young-Sook;Cho, Sin-Sup
    • Journal of the Korean Statistical Society
    • /
    • v.17 no.2
    • /
    • pp.101-120
    • /
    • 1988
  • A time series model with Laplacian (double-exponential) marginal distribution, NLAR(2), was proposed by Dewald and Lewis (1985). The special cases of NLAR(2) process and their properties are considered. Extensions to the NLAR(p) is discussed. It is shown that the NLAR(1) satisfies the strong-mixing conditions, hence the model-free prediction interval using the sample quantiles can be obtained.

  • PDF

Survey on the Market of Modular Building Using ARIMA Model (ARIM모형을 활용한 모듈러 건축시장 현황 조사)

  • Park, Nam-Cheon;Kim, Kyoon-Tai;Lee, Yuril
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.14-15
    • /
    • 2014
  • The modular construction is as yet early stage of market in Korea. So It is have difficulty of market demand forecast of the modular building. Therefore, this study was done analysis for market trends of the modular building using ARIMA(Auto Regressive Integrated Moving Average) model by time series data.

  • PDF

A PARAMETER CHANGE TEST IN RCA(1) MODEL

  • Ha, Jeong-Cheol
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.135-138
    • /
    • 2005
  • In this paper, we consider the problem of testing for parameter change in time series models based on a cusum of squares. Although the test procedure is well-established for the mean and variance in time series models, a general parameter case was not discussed in literatures. Therefore, here we develop the cusum of squares type test for parameter change in a more general framework. As an example, we consider the change of the parameters in an RCA(1) model. Simulation results are reported for illustration.

  • PDF

Generating Complicated Models for Time Series Using Genetic Programming

  • Yoshihara, Ikuo;Yasunaga, Moritoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.146.4-146
    • /
    • 2001
  • Various methods have been proposed for the time series prediction. Most of the conventional methods only optimize parameters of mathematical models, but to construct an appropriate functional form of the model is more difficult in the first place. We employ the Genetic Programming (GP) to construct the functional form of prediction models. Our method is distinguished because the model parameters are optimized by using Back-Propagation (BP)-like method and the prediction model includes discontinuous functions, such as if and max, as node functions for describing complicated phenomena. The above-mentioned functions are non-differentiable, but the BP method requires derivative. To solve this problem, we develop ...

  • PDF

Maximum Likelihood Estimation for the Laplacian Autoregressive Time Series Model

  • Son, Young-Sook;Cho, Sin-Sup
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.3
    • /
    • pp.359-368
    • /
    • 1996
  • The maximum likelihood estimation is discussed for the NLAR model with Laplacian marginals. Since the explicit form of the estimates cannot be obtained due to the complicated nature of the likelihood function we utilize the automatic computer optimization subroutine using a direct search complex algorithm. The conditional least square estimates are used as initial estimates in maximum likelihood procedures. The results of a simulation study for the maximum likelihood estimates of the NLAR(1) and the NLAR(2) models are presented.

  • PDF

A Fast Time Domain Digital Simulation for the Series Resonant Converter (직렬 공진형 변환기에 관한 시간 영역 디지틀 시뮬레이션)

  • Kim, Marn-Go;Han, Jae-Won;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.534-538
    • /
    • 1987
  • State-space techniques are employed to derive an equivalent nonlinear recurrent time-domain model that describes the series resonant converter behavior exactly. This model is employed effectively to analyze large signal behavior by propagating the recurrent equation and matching boundary conditions through digital computation. The model is verified with a laboratory converter for a steady-state operation.

  • PDF

Hydrologic Time Series Model by Transfer Function (대체함수에 의한 수문 시계열 모형)

  • 강관원;김주환
    • Water for future
    • /
    • v.24 no.3
    • /
    • pp.61-70
    • /
    • 1991
  • the relationships between rainfall and runoff are analyzed statistically and modelled using discrete linear transfer function, which can be shown with the relations between input and output in hydrologic system. The procedures of identification, estimation and diagnostic checking of model are proposed, and the suitabilith of assume model is determined by the statistics used in time series analysis.

  • PDF

A Study on the Support Vector Machine Based Fuzzy Time Series Model

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.821-830
    • /
    • 2006
  • This paper develops support vector based fuzzy linear and nonlinear regression models and applies it to forecasting the exchange rate. We use the result of Tanaka(1982, 1987) for crisp input and output. The model makes it possible to forecast the best and worst possible situation based on fewer than 50 observations. We show that the developed model is good through real data.

  • PDF