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A Laplacian Autoregressive Time Series Model*

Young Sook Son* and Sinsup Cho**

ABSTRACT

A time series model with Laplacian(double-exponential) marginal distribution, NLAR(2),
was proposed by Dewald and Lewis(1985). The special cases of NLAR(2) process and
their properties are considered. Extensions to the NLAR(p) is discussed. It is shown that
the NLAR(1) satisfies the strong-mixing condition, hence the model-free prediction interval
using the sample quantiles can be obtained,

1. Introduction

Most of the current time series analysis which are based on the simple linear models such
as ARMA models by Box and Jenkins(1976), the filtering method and etc., are started
from the Gaussian assumption for the distribution of innovations. Although under the nor-
mality assumption many statistically optimal techniques are developed, there are many
other cases which are not satisfied by Gaussian time series modelling even after suitable
transformations. For example, the study of 21 economic time series by Nelson and Granger
(1979) has found that in more than two thirds of the cases the hypotheses of normality
were heavily rejected after the application of the Box-Cox transformation. The non-Gauss-
ianity may be due to the fact that the phenomena are inherently positive-valued and highly
skewed, or are distributed with a large kurtosis or a longer(or shorter) tails than is exhibited
by Gaussian variates,

The first cases are well illustrated in the river flow studies by Lawrance and Kottegoda
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(1977) and the wind velocity studies by Hugus(1982), Brown, Katz and Murphy(1984).
The time series models which well incorporate such features have been constructed by many
authors during a recent decade; for example, exponential time series models such as EARMA
(Exponential Autoregressive Moving Average) and NEAR(New Exponential Autoregres-
sive) with exponential marginal distribution by Jacobs and Lewis(1977); Lawrance and
Lew1s(1977, 1980, 1981, 1982, 1985) and gamma time series models such as GAR(Gamma
Autoregressive) and BGARMA (Beta-Gamma Autoregressive Moving Average) with
gamma marginal distribution by Gaver and Lewis(1980); Lewis, McKenzie and Hugus
(1985). Among positive valued and highly skewed distributions the exponential distribution
is most widely used and analytically most tractable, for it has many useful properties like
the Gaussian distribution and also can be transformed very easily into other distributions
which are either more skewed or less skewed than itself. It is shown in Lewis(1985) and
Raftery(1982) that the Weibull, Gamma, Uniform, Erlang, and Beta process can be directly
converted from exponential process.

The second cases occur in the random fluctuations study of response rate by McGill(1963),
pseudo-voice signal study by Linde and Gray(1978) and Uddenfeldt and Zettenberg(1976),
position errors study in navigation by Hsu(1979), and two dimensional discrete cosine tran-
sform coefficients study for images by Reininger and Gibson(1983). McGill(1963) showed
that the intervals between responses which are expressed as deviates from excitation period
are well described by Laplacian distribution. In the pseudo-voice signal study, Linde and
Gray(1978) considered the autoregressive source using Laplacian variables, ie,

Xi= cX¢y+ /' 1-¢

where 0.8 <c = 09 and {7} is a sequence of iid. Laplacian variables. Hsu(1979) used
a mixture of two Laplacian distributions to explain better features of navigational position
errors, and showed empirically its better adequacy over other models, Reininger and Gibson
(1983) showed that for a two-dimensional discrete cosine transform image coding system
the statistics of transformation coefficients is best approximated by a Laplacian distribution;
To describe a Laplacian process, Dewald and Lewis(1985) developed a family of New
Laplacian Autoregressive(NLAR) processes which is very similar to the family of New
Exponential Autoregressive(NEAR) processes studied by Lawrance and Lewis(1985).
Dewald and Lewis studied the properties of NLLAR process and showed that it satisfies
the Yule-Walker type difference equations, thus, the second-order moment dependency
aspects are indistinguishable from those for Gaussian AR process. The estimation methods
and the forecasting procedures were not studied, however,

In this paper, we study the modelling and forecasting procedures in NLAR processes.
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Estimation procedures are currently under study and will be reported elsewhere. In Section
2. we review the NLAR(2) process of Dewald and Lewis(1985) and its properties. Also
the LAR class, the special case of NLAR class and extension to the NLAR(p) are studied.
It is shown that the NLAR(1) process satisfies the strong-mixing condition in Section 3.
Finally, in Section 4 the forecasting procedures in the NLAR process are considered and

the simulation results are presented.
2. New Laplacian Autoregressive Process
NLAR(2) process

Following the terminology in Gaver and Lewis(1977, 1980), Jacobs and Lewis(1977),
and Lawrance and Lewis(1977, 1980, 1981, 1982, 1985), Dewald and Lewis(1985) proposed
a time series model called the second-order New Laplacian Autoregressive(NLAR(2))
which describe the stationary Laplacian process with i1.d. Laplacian innovations as follows.
Theorem. (Dewald and Lewis) Let {X;} be a stationary process with standard Laplacian
marginal distribution, Note that for all t

Xe=¢,V, Xt ¢2V2,tXt—z+ Et, (2.1)
where { V., Va} is a sequence of iid. bivariate random variables with distribution,

(1,0) wWp. D
{Vie, Vo = { 01) wp D (2.2)
(0,0) wp.. 1-Di D

for t= 0,41,42,---:{ €.} is an iid. innovation sequence, and { e} and {V,, V) are
independent. For all t, let (2.1) and (2.2) hold with

0<|¢i‘<1,0<p,<1 for i= 1,2 and p,+ p.<1. (2.3)
Then
= UtEt, (2-4)

where {E.} is a sequence of iid. standard Laplacian variates; {U:} is a sequence of i.id.

random variables with distribution,

1 w.p. Y
{Ut}z bz W.D. T, (25)
b, W.p. T,
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and is independent of {E.}, {V,,, Va.} for all t, Here,

m= {(1-¢}) (1-¢D} /{16 ) (1-4)+ p dA1- ¢ )+ D $2(1-42)},

= {(D 03 . 43) bi- (ot p) 4363} / {(Ba—12) (1-b3)}, (2.6)
7= {(pi+ D) #2023~ (P 6+ . #3) b2}/ {(b2—b%)(1-b2)},
where 0 <bj= (u~/u~4v )/ 2<bi= (u+,/u=4v )/2<1 2.7

with u=(1-p,) ¢4 (1-p,) ¢2
and v=(1-prp.) #3g32

proof. The proof of Theorefn directly follows the one in Lawrance and Lewis(1985) for
the NEAR(2) process. Also, the proof for the stationarity of NLAR(2) is an immediate
consequence of the work of Nicholls and Quinn(1982). @

The stationary NLAR(2) process has four parameters, Laplacian marginal distribution
for {X.}, second-order autoregressive Markovian dependence, fully time irreversibility de-
fined by Weiss(1975), and partially time reversibility in the sense of third-order moments
that

E(X#ep= E(XXE)), (2.8)

for all /. It can be easily shown that the autocorreleation function(a.cf.) of NLAR(2) process,
p= Corr(X(,X¢), satisfies the Yule-Walker type difference equation,

o= ¢ PPt & :DoPua, (2.9)

for k=1,2,---, which is the same as the Yule-Walker equation for Gaussian AR(2) process
and the admissible regions for parameters and for g, and p, are | ¢lp,| + I ¢2p2] <1 and
| /1| <(1+4 p,) /2 with JP,}, [ £, [ <1, respectively, For more details, see Dewald and Lewis
(1985).

Now, we consider several special cases of the NLAR(2) which are similar to EAR(Ex-
ponential Autoregressive) considered as special cases of the NEAR(2) in Lawrance and
Lewis(1985).

LAR(2) process

If we let pp= 1- ¢3 p,= ¢3in NLAR(2) of (2.1), we obtain (2.10) which we call the
second-order Laplacian Autoregressive(LAR(2) ) process,
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# Xy w.p. 1-¢%
Xi= l + &, (2.10)
¢.X2 WD $3

where
E. wp  m= (1-¢)(1-¢3) / (1-9%)
€= [ I6E.  wp.  m= (1-4)(4i—¢9*/ 1+ 4i—9H(1-¢?) (2.11)
0 wp m=¢}/(1+di-43), :

with 6= ¢3(1+ ¢1—¢%). The acf. for LAR(2) is
o= $,(1- 93 ot 3ok k>3, (2.12)

which is easily obtained if we set p= 1—¢2andp,—= ¢2in (29).

NLAR(1) process

The NLAR(1) process is the first order autoregressive version of NLAR(2) with ¢,=0
and is given by

Xi= } + €4, (2.13)
# X W.p. p
where
E, w.p. 1-x
€f_= { (2.14)
/1-p|#|E.  wp.  w= 4%/ (1-(1-p) 4.

The random coefficient form of process is convenient for the analysis of a process with
random coefficients which switches terms included in the process. The first-order Random
Coefficient Autoregressive(RCA(1)) form for NLAR(1) is

Xi= ¢ ViXe+ UE, (2.15)

where {V} is a sequence of i.i.d. Bernoulli(p) variables and { U,} is a sequence of i.id. discrete
random variables with distribution,

1 w.D. 1-n
{U}= - (2.16)
J/1pl|gl wp



106 Young Sook Son and Sinsup Cho

The acf. for NLAR(1) is
o= (#p)* k>1. (2.17)

LAR(1) process

As LAR(2) is obtained from NLAR(2), LAR(1) process in (2.18) is obtained from
NLAR (1) withp=1;

Et w.p. 1- ¢ z
Xi= ¢ Xt & , Where €= (2.18)

0 W.p. @z

The actf. for LAR(1) is
A= g% k>1. (2.19)

From the above model constructions, we know that the NLAR(2) model is a general
model including LAR(2), NLAR(1), and LAR(1) models. Similarly, the NLAR(1) model
includes the LAR(1) model. The NLAR model provides great flexibility to model building
because of the broad range of correlations and dependence structure which can be obtained
with the use of more parameters than the order, while the LAR class is simpler in mani-
pulation than the NLAR class. But its innovation variable has a zero component often called
zero defect which makes the maximum likelihood estimation impossible and is an unrealistic
feature in most practical situation: the zero innovation in the LAR(I) implies that X,=
¢ Xy and ¢ can be determined exactly from the sample path of the process,

NLAR(p) process

An NLAR(p) process, p-th order Laplacian(p>3), can be constructed analogously to the
NLAR(2) process and may be written,

¢ . Xy W.D. a,
$. X2 WD 2
Xi= + & (2.20)
¢ Xip W.p. ap
0 w.p. 1- p*

for t= 0,+1,+2, -+, where p*= 3P, a,, The LAR(p) process can be obtained if we set



Laplacian Autoregressive Time Series Model 107
_ 2
a;=1—¢3

i
a;=( 1—¢;+1)i1=12 ¢r, j=2,3, -, p—1

P
ap=1
i=

¢’

13

X

in NLAR(p) process.

In NLAR(p) process, the structure of error € + which gives a stationary standard Lap-
lacian marginal distribution of {X;} would be very difficult to derive, because it is algeb-
raically complicated to solve the defining equation for the distribution of &’s if it exists.
However, letting ¢,= ¢,= ---= @p= ¢, the same error structure as that of NLAR(1)
1s obtained. In this case, NLAR(p) takes the following form,

# X w.p. 2,

¢ X, W.p. a,
X= . + & (2.22)
¢ Xep w.p. ap

0 w.p. 1-p

for t=0,41,42,---,where p* = 2P, 4, and

E. Ww.Dp. 1-m
E¢= (223)
J1p* |4|Ee wp.  r= 4%/ (1-(1-p*) ¢2).

Also, the simplified LAR(p) process in case of p*= 3%, a,= 1 in NLAR(p) of (2.22)
is given by

¢ Xy w.p. a4
$Xi2 WD 2 Ei wp  1-¢°?
X¢= + (224)

$Xep WD a3

for t= 0,+1,12,--- .

The properties of NLAR(p) process in (2.22) are similar to that of NLAR(2): NLAR(p)
has a Laplacian marginal distribution and is p-th order Markovian and strictly stationary.
The a.cf. for the NLAR(p) of (2.22) is
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Px :¢;§1 aiPr-i, k=L (2.25)
The equation (2.25) is the same as Yule-Walker type equation for Gaussian AR(p), and
so its general solution is

Pk = EIA;'GI: , (2.26)

where G, G7,---,G % are the roots of characteristic equation 1- ¢ 3P, a, B'= (),

3. Strong-mixing property

It was shown by Cho and Miller (1987) that the LAR(1) of (2.18) is strong-mixing. Raftery
(1980) showed that the NEAR(1) in case of ¢ = p is strong-mixing. Following Raftery
(1980), we will show the mixing property of {X,} in the Laplacian process, The NLAR(1)
in (2.13) can be rewritten as

k- .
J.{% ¢l ey i + ¢kxt w.p pk

i 3 . '
J-§o¢’et+k—j w.p. pt(l—p), =012 - k—1,

’ ’

From (2.13) we have

(s) =E[ exp(se;) ] 1—¢'s? f -
s) = . =
Me; CXPRE (1—s%) {1—(1—p)¢2s?}’ o g, (32)
and
k-1 i _k—l i
E[exp(sj§0¢ 5t+k—i)]'}£[) Me o (s¢’)
Rt (1—g™)/(1-s?)
-2 ¢ (33)

k 21— <2
Hj=1{l ¢ (1—p) s? }

The moment generating function (3.3) of the distribution of Y= 2‘]‘3 #/ € gives the
following relation,
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k o 0 w.p, ¢
Y=3 |¢|"¥/1-pL; + { (3.4)
j=1 LO w.p. 1__¢2k’

where {L,: j= 0,1,2---k} is a sequence of iid. standard Laplacian variables. L =3, AL,
can be written as the difference between 32, A.E,,and 3%, A,E,; assuming 2n i..d, standard
exponential variables, E;;, E,, i= 1,2,---n. Following Johnson and Kotz(1970, pp222) we

have the probability density of L= 38, AE,;;- =, A E,,

n—1 _n-1
a n A; A; expHI|/A;)
L) =% > - . (3.5)
t=1 j=1 (2i+2j) Huti(li_'lu)nvtj(zf—lv)

for A% A, Thus the probability density of Y in (3.4) is directly obtained from (3.5);

dFy(y) k kK k
YT (= y D (U5 Ugj () + 3 3 Vi ()
dy j=1 i=1 j=1
k k
AR R AP (36)
where
Kk -
U, = 2—1( 1_¢2k)1=11( 1_|¢|u /l—’p) 2

< 27t (1-¢%k) ﬁl( 1-|¢|*vI=p) 2
< 2—1( 1_¢2k) ijl( l—|¢'“)—2

< {1+ %Iqﬁl“( =g DT (1—]@|2) 7 e (1= |¥) )2
= Cu, a constant, from Erdelyi and et al. (1955), (3.7)

k
Upj(y) = (1=¢*) vT-p (Il (1—|p[*¥VT=p)7'}

< (L (1T =191M ™) {2 1—p)—1) ™ ||, (38)
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k . .
Viij(y) = (1=¢") /T=p { IL (gl =[g]")7} (|g|* ¥/ T=p—1)
k . ;o —— L.
x {vgj (lpli=1g" ) (gl IV T—p—1)7 | R+

x (@15 +1p1) 7 exp [y [{(I¢]'W/T=p) ' ~1}], (39)

ke .
Vaij(y) =9V T=p 7 {11 Clg|*~1p*) ™)

X {VII:IJ ( |¢I]__‘¢lV)"l }I¢|(i+j)(k—l)

< (|p|*+1pl )™ exp [—|y]| {(|¢|* VT=p) =1} ], (3.10)
and
Vi() = (1=¢) /T ([ (1= 1g1"VT=5) ™) (L (g1F = 1917

X (g (1-p) =1 ] exp [~ |y | (1! vT=P) -1} 1 (311)

Here, we have

o

k .
V;(y) S'ZJI |v; (y)|£i§,l Vi (y)] =cCy, (3.12)

=1

a constant, by ratio test. Similarly, £, U,(y) <Cu,, 3%, 5k Vy(y) < Cvy, and =X, 3k,

=1

V., (y) <Cv,, where Cu, Cv,, and Cv, are constants, Thus,

dFy(y) <Ce ™dy, (3.13)

where C= Cu,+ Cu, + Cv,+ Cv,+ Cv is a constant.

Suppose Fy¢ and G, are sigma fields generated by (+++, X, X¢) and (X Xesgen, **), r€s-
pectively, and consider f € L*(F;) and g€ L*(G.y) in the sense that E(f?) < oo and E(g?)
< oo, For the NLAR(1) process of (2.13) we have
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E(f - g)- E(H)E(g)= E[f - {E(g]X.)- E(g)}]. (314)

Consider the event A= { Xec= 2‘]‘3 #) et #*X.} with Pr(A)= p* and the events
A[Z {Xt+k:2;=o ¢j euk,j} with Pr(A‘) = p'(l-p) for i:O,l,Z,-",k—l. Then

k1.
E(glX)=Z p'(1-p)E[ (glX.)|A; ]+ p E[ (g]X,) |A] (3.15)
and
k-l .
E(g) =2 p*(1-p) E(gl|a;) +p*E(g]A), (3.16)

For i= 0,1,2,+- k-1,

E[(g]X)] Al= E(glAi)- (3.17)
Hence
E(g]|X:)- E(g)= p*{E[(g|Xy)|Al- E(g|A)}. (3.18)
Assuming, ¢¥x>0,
IE [(glxy) |ad]=] J::E(glxﬁﬁy) dFy (y—¢*x,) ]|

<C I E(elXue=y) exp(~| y—¢*x, ) dy

= C{exp(—¢*x,) j'_f’kx' E(|g|l Xise=y) ¥ dy
expghx) S BClgllXar=y)e™ &)

< C- exp(¢hxy) _[:E( [ gl Xps=y) e ¥l dy

= 2C-exp(¢*x,) E( | g]). (3.19)

Also,
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1B (gla) |= | [ BL(g|X) [AT-27 vexp (= | X, | ) dx,]
<C-Etg] § exp(¢*x,—|x;]) dx,, from(3.19)
= 2C-E(|g])(1—¢2) 7,

From (3.14), (3.19), and (3.20)

| E(f - 2)- E()E(g)| < pE[If|{|E(g]|X,) + | E(g)l}]
=2Cp*E[IfIE(Igl){exp( g x)+ (1- ¢%) )]

=2Co/E(If[)E(Igl) /E[exp(#*x)+ (1- g )72

= Cp*/E(If]>)E(Igl) , for k=- log k' /log | #], (3.21)

where C’ is a constant and k’ is much larger than 2. For any measurable sets B € F; and
D€Guy, let f= 1p(---, X, X¢) and g= 1p(Xeu, Xtsn, ), In case of which f € L*(F}) and
g€ L*(Ge ). Now, from (3.21) and the fact that Pr(B), Pr(D)<1

sup |Pr(BMND) —Pr(B)Pr(D) | <C'pk — 0 as k—woo. (3.22)
BeF,
DeG g4x

Alternatively, assuming ¢ ¥x, <0, the same result as (3.22) is obtained, Thus the NLAR(1)
process is strong-mixing with a(k)=C/p*

4. Forecasting
4.1. Point forecasting
An observation X.., generated by the Laplacian autoregressive process defined in Section
2 may be expressed as a randomly weighted infinite sum of current and previous innova-
tions;
X 4k :1§0 ¢j,t+k € t+k~-j (4.1)

where ¢i= (doe, e e)s {40 t= 0,41,+2+} is a sequence of multiples of random
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coefficients with fixed parameters, {¢.} and { €} are independent, and { €.} is a sequence
of innovations with mean 0 and variance o%,

We assume that a forecast at origin t for lead time k is a linear function of current and
previous innovations gy, .4, Et--- and denote a sigma field generated by {X, X+, X¢}
by H;. Then the minimum mean square error (m.m.s.e,) forecast at origin t for lead time
kis

R: (k) =E (Xyaie [Hy) = S EGnemdH) e (42)

The forecast error for lead time k is
k=1 w
e (k) =jz=30¢j;t+k € g+k—j +j§k{gbj,t+k ~E(¢j, e+ | Hy) } € tiemje (43)

Since E(e((k)|H;)= 0,the m.m.s.e. forecast is unbiased and the variance of forecast error
is

k-

k=1
Var (e (k) |H,) :UZ j=26 E((/]j,ﬁk

|Ht)+jZ=]kVar(¢,-,t+k|Ht)ez . (4.4)

It is easily shown that that any linear function Sf, WiX¢(k)is a m.m.s.e. forecast of the
corresponding linear function 3P, W, X, of future observations.
At time t+k the NLAR(1) of (2.13) may be written

k-1 . j-1 k=1
Xtk = € g4k +j§1 @7 (I Vi) € vniej +ek ( ‘.90 Vi) X (4.5)
or
X 4k =j§0 ¢j,t+k € t+k—j» (4.6)

where ¢o,ca= 1 and ¢;,ux= ¢'TI"} Veuc: j= 1,2, Taking conditional expectations at
origin t, the m.ms.e. forecast for lead time k, f(t(k)z ¢ ¥p¥x,, which decays to zero as k
gets larger since | #| <1, is obtained. Exponential decay of )A(t(k) to zero is smooth if ¢
is positive and oscillatory if ¢ is negative. The forecast function in this case is determined
entirely by the single observation, x,, at origin t. The forecast error and the forecast variance
for lead time k are, respectively,
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_ k-1 . j-1 -
ey (k)= et+k+j§l¢]('.l=10vz+k—i) € ki T P¥ ( (1;1;[; Vitiei) —p*)X, 4.7)
and
Var(ei(k) | H)= (4 7)*(1-p*)xi+ a2(1- ($°p)*) / (1- ¢%p), (4.8)

where of= 2(1-7+4 n(1-p) 4?) with r==¢% / (1-(1-p) ¢?). We see that the forecast va-
riance for this NLAR(1) process converges to a constant value i/ (1- ¢°p) as k tends
to infinity. Also '

k_
E(e, (k) - X,) =¢kE[(;1=]; Vined) —pA) X2 ]
k=1
=$*ELCH Vi) —p*JE (X}) =0, (49)

which implies that there is not any more information about X;’s left that can be obtained
from the forecast error e;(k) up to time t.

Suppose we make a series of forecasts for different lead times k and k+/ from the same
origin t. Then we have two forecast errors, e.(k) of (4.7) and

ktl=1 . j=1
et (k+1) =g i +j§1 ¢’(‘.I=Io Vik+1-i 8 t+ich 1=

k+i-1
+O (UL V-1 =< Xy, (4.10)

for /=1,2,--- The covariance between the t-origin forecasts at lead times k and kI is

21 1 2_yk
c (1—~( ) <)
Coviey(k), e, (k+!) |H) = (¢2p) i (1—pF)x? + ef P $°p (4.11)

t (1—¢%p)
and the correleation coefficient between t-origin forecast errors at lead time k and k+/ is

Corr(e¢(k), e, (k+1) |H,)

11 2 4k
2 _yk+l k ¢’ p’ (1—($*p)*)
_ (P*p)* (1—p )xf+a: p—re

/{ (¢2p)k( 1—pk) x2 +¢2 '—-————1—(¢2p)k} {(5252 YR (1 —pktlyx2 4 52
+ % T 1 g% p P v %

e (412)

1—¢2p }
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We note that the correlations goes to zero as ! tends to infinity.
The m.m.s.e. forecast at origin t for lead time k in the NLAR(2) process of (2.1) is

jzt(1)= ¢1P1Xt+ ¢zpzxt~1
Xe(2)= ¢ pXe(l) + & px¢ ‘ (4.13)
X(k)= ¢ pXe (k-1) + #pXe(k-2) k= 34,

It is analogous to forecasting a Gaussian AR(2) process, since the forecast function for lead
time k is the solution of ¢(B))2t(k)= 0, where ¢(B)= 1- ¢, p,B- ¢ .p,B%. This fact implies
that the general forecast function for NLAR(2) process is a mixture of exponentials and
damped sines. The forecast function at origin t is determined entirely by the last two ob-
servations X, and X..

Similarly, the m.m.s.e. forecast at origin t for lead time k in the NLAR(p) process of
(2.22) is

k-1 A
@ ,glai Xt(k—i)+¢§(a,~xt+k_,~ , k=1,2, -, p
v (4.14)

¢§]la,-5(\t(k—i), k=p+1, p+2,

fedd

and is the soultion of sv(B))A(t(k): 0, where ¢(B)= 1- ¢ 3%, a B’ which applies for all lead
times and passes through the last p available values of the series,

4.2. Interval forecasting
Prediction interval can be obtained using the probability limits of forecasts at any time,
Since in NLAR(1) of (2.13) the conditional probability distribution of X, given information

up to time t is

k=1,
f X gap)Xe, Rgogeer (v]%¢,Xemy...) PR iy (y—gRxy) +( l—p)izz.‘lo p'fy(y), (4.15)

where fy(y) is defined in (3.6), the (1-a) probability limits for X, X (£ ), can be ob-
tained by solving

(+) .
";:(t+l((—) Ex e | ®e, Xymg oo (ylxy, X4oq,...0dy=1—a (4.16)
t+k
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The form of fx,,, |x Xt (¥ 1X¢,X¢e, ) Is complicated, however, and it is not easy to obtain,
in practice, such prediction interval as in the Gaussian AR case. This leads us to consider

other interval forecasting method, i.e., the robust model-free prediction method to be fol-
lowed.

Butler(1982) proposed a nonparametric prediction interval for a future observation Xp.,
given a random sample X,, X,,---, X, using the sample quantiles, Cho and Miller(1987)
showed that, for dependent processes, the sample quantiles can also be used to from a
prediction interval if certain conditions are satisfied. Since the strong-mixing coefficient,
a(k), for the NLAR(1) satisfies the condition a(k)= O(exptgk)),for some g, model-free
prediction interval can be obtained for the NLAR(1) by theorem of Cho and Miller(1987).
Simulation is perforemd to see how this model-free method works for small samples. Co-
verage percentages of one step ahead model-free P.L’s for the NLAR(1) with ¢ =—09
to 0.9 and p= 0.1 to 0.9 in increments of 0.1, respectively, are obtained when sample size
are n==20 and 100. To obtain the P.I’s for n==100(20) we generate 101(21) observations
from the NLAR(1) using an IMSL function, GGUBFS., Using the first 100(20) observations
90% P.1. is obtained. We use the 5th and the 95th, [ X,Xe ], observations for n=100 and
the minimum and the maximum, [X,Xey], observations for n=20. 500 replications are
made for each( ¢ p) pairs. Simulation results are summarized in Table 4.1 and 4.2. For
n=100, it is observed that the coverage percentages of the 101th observation by the 90%
P.L’s range from 85 to 93% which is the similar result reported in Cho and Miller(1987)
for the LAR(1) case. The 90% P.1’s capture also 85 to 93% of the 21th observation except
the case of (0.9, 0.9) for ( ¢ ,p). From the above simulation result we can see that for interval
prediction the model-free method using the sample quantiles is not only easy to apply but
also performs well for small samples as well as for large samples, while the model based
method using (4.16) is hard to use in practice because of the complication of the distribution
function. Raftery(1982) stated that the NEAR(p) is ®-mixing with ®o(k)= (a,+ a,+ -+
+ ap)k. Based on his statement we may be able to extend the model-free method to the
NLAR(p). Although we have not been able to prove our conjecture, however, to support
this we report our simulation result for the NLAR(2) in Table 4.3 where that 90% P11’
s capture 85 to 92% of the 101th observation for each ¢, and p, with fixed ¢,=—0.6 and
p= 03.
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Table 4.]. Coverage percentages of one step-ahead 90% P.I.'s for NLAR(1) process of size
n=100 using 500 simulation trials

AN 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
—09 08660 0.8880 08820 09080 08960 08940 08540 0.8960  0.9040
—08 08860 08960 08820 09080 08760 0.8680 08860 09160  0.8920
—07 08740 08920 08880 08880 09220 08700 08520 0.8760  0.8900
—06 08940 0.8940 08920 0.8860 0.8680 0.8660 08980  0.9040  0.9040
=05 09120 09020 09060 08900 0.8880 0.8820 08900 0.8960  0.8340
—04 09060 08940 08920 09120 0.8840 0.8840 08760 0.8900 0.8720
—03 0.8760 08780 08940 09060 0.8920 08820 0.8920 09120 0.8960
—02 08880 08580 08760 08860 08960 0.8820 08720 0.8800  0.9060
~01 0.8900 08860 08740 09020 09020 08940 0.8920 09120 0.8980

00 08980 0.8920 08920 08740 0.8820 0.8860 0.8980 0.9020  0.8940
01 08780 09220 09020 08680 0.8980 0.9000 09000 08760  0.8920
02 08920 09040 09060 08960 0.8860 0.8880 0.8800 0.9060  0.8780
03 08740 08940 0.8940 0.8600 0.5040 0.8960 0.8800 09000 0.8640
04 0880 09080 08900 09320 0.8940 0.8880 09180 0.8960  0.8980
05 09280 08720 0.8860 0.8920 0.8800 0.8820 0.8920 09040  0.8800
06 08980 08900 08900 08920 0.9020 0.8940 0.8860 09060  0.8920
07 0.8780 09100 0.8680 0.8960 09140 0.8780 08660 0.8880  0.8760
08 08720 08880 08980 08820 08660 0.8960 0.8840 08840 0.8520
09 08980 09020 09020 08940 08780 08920 08860 0.8820  0.8960

Table 4.2. Coverage percentages of one step-ahead 90% P.l.’s for NLAR(1) process of size
n=20 using 500 simulation trials.

#\p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9
—09 09140 09220 09040 09140 09200 09280 0.8000 0.8%00 09160
—08 09100 08920 09080 08800 08920 08720 009140 0.8960  0.8980
—07 09220 09020 09060 0.8980 09020 09020 0.8960 09100  0.8920
—-06 09200 0.9080 09160 0.9080 0.9000 09100 0.8900 0.9080 0.9100
—05 059140 09200 09220 0.9060 0.9040 0.9340 09020 0.9060  0.9080
—04 09060 09080 08740 0.8720 09180 0.8960 0.8940 0.9060  0.9100
—03 09020 09040 0.8940 09200 0.9000 09220 09240 0.9020 09200
—-02 08860 08900 09100 09360 09200 09120 08920 08920 0.9040
—0.1 09020 09180 0.8%00 09300 08960 08940 08820 09260 0.9240

00 09320 09100 09080 09100 09160 0.8860 09280 0.8980 0.9320
01 09060 0.8920 09160 0.8960 0.8860 0.9340 09280 0.8940 09140
02 058100 09100 09280 0.8840 - 08960 09120 0.8920 09140 0.9240
03 09100 05140 08800 0.9200 0.9000 0.8940 0.8900 09140 0.8820
04 09160 09240 09040 09200 0.5000 0.8940 0.8900 09140 0.8820
05 09020 09180 09220 09060 0.8980 09060 0.8960 0.8880  0.9160
06 08330 08860 09140 08920 09160 09040 0.8380 0.8840  0.8700
07 09120 09000 09220 09220 0.8800 0.9080 0.8640 0.8980  0.8840
08 09180 09020 09080 08940 08660 0.8820 0.8700 0.8780  0.8500
09 08800 08800 08820 08580 0.8920 0.8680 0.8380 0.8540  0.8280
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Table 4.3. Coverage percenages of one step-ahead 90% P.l.’s for NLAR(2) process

with fixed ¢,= —0.6, p,= 0.3 of size n=100 using 500 simulation trials

. P 0.1 0.2 0.3 04 05 0.6
—0.9 0.8840 0.8900 0.8880 0.9040 0.8940 0.9080
—0.8 0.8820 0.8720 0.8760 0.9080 0.8980 0.8940
—0.7 0.8820 0.8820 0.8840 0.9020 0.9080 0.8960
—0.6 0.9000 0.8920 0.8980 0.8680 0.8880 0.9020
—0.5 0.9120 0.8940 0.8720 0.8840 0.8900 0.9020
—0.4 0.9060 0.8960 0.8980 0.8920 0.8860 0.8960
—0.3 0.8760 0.8800 0.8980 0.8920 0.8840 0.8760
-0.2 0.8880 0.8580 0.8840 0.8880 0.8860 0.8840
—0.1 0.8900 0.8860 0.8780 0.8940 0.9000 0.8900

0.0 0.8980 0.8920 0.8920 0.8740 0.8820 0.8860
0.1 0.8780 0.9220 0.9040 0.8740 0.8980 0.9000
0.2 0.8920 0.9040 0.9120 0.8840 0.8820 0.9020
0.3 0.8760 0.8940 0.8940 0.8660 0.9280 0.8820
04 0.8880 0.9140 0.8900 0.9140 0.8800 0.9020
0.5 0.9280 0.8640 0.8860 0.8840 0.8960 0.8640
0.6 0.8900 0.8920 0.8940 0.8620 0.8880 0.8600
0.7 0.8880 0.9120 0.8860 0.8660 0.8620 0.8800
0.8 0.8760 0.8740 0.8860 0.8590 0.8980 0.9000
09 0.8680 0.9080 0.8760 0.8840 0.8780 0.8900
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