• Title/Summary/Keyword: Time-Varying Volterra System

Search Result 5, Processing Time 0.016 seconds

Adaptive Identification of a Time-varying Volterra system using the FWLS (filtered weighted least squares) Algorithm (FWLS 적응 알고리듬을 이용한 시변 볼테라 시스템 식별)

  • Ahn, K.Y.;Jeong, I.S.;Nam, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.3-6
    • /
    • 2004
  • In this paper, the problem of identifying a time-varying nonlinear system in an adaptive way was considered, whereby the time-varying second-order Volterra series was employed to model the system and the filtered weighted least squares (FWLS) algorithm was utilized for the fast parameter tracking capability with low computational burden. Finally, the performance of the proposed approach was demonstrated by providing some computer simulation results.

  • PDF

Utilization of the Filtered Weighted Least Squares Algorithm For the Adaptive Identification of Time-Varying Nonlinear Systems (적응 FWLS 알고리즘을 응용한 시변 비선형 시스템 식별)

  • Ahn Kyu-Young;Lee In-Hwan;Nam Sang-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.12
    • /
    • pp.793-798
    • /
    • 2004
  • In this paper, the problem of adaptively identifying time-varying nonlinear systems is considered. For that purpose, the discrete time-varying Volterra series is employed as a system model, and the filtered weighted least squares (FWLS) algorithm, developed for adaptive identification of linear time-varying systems, is utilized for the adaptive identification of time-varying quadratic Volterra systems. To demonstrate the performance of the proposed approach, some simulation results are provided. Note that the FWLS algorithm, decomposing the conventional weighted basis function (WBF) algorithm into a cascade of two (i.e., estimation and filtering) procedures, leads to fast parameter tracking with low computational burden, and the proposed approach can be easily extended to the adaptive identification of time-varying higher-order Volterra systems.

Adaptive identification of volterra kernel of nonlinear systems

  • Yeping, Sun;Kashiwagi, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.476-479
    • /
    • 1995
  • A real time and adaptive method for obtaining Volterra kernels of a nonlinear system by use of pseudorandom M-sequences and correlation technique is proposed. The Volterra kernels are calculated real time and the obtained Volterra kernels becomes more accurate as time goes on. The simulation results show the effectiveness of this method for identifying time-varying nonlinear system.

  • PDF

Time Series Prediction of Dynamic Response of a Free-standing Riser using Quadratic Volterra Model (Quadratic Volterra 모델을 이용한 자유지지 라이저의 동적 응답 시계열 예측)

  • Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.274-282
    • /
    • 2014
  • Time series of the dynamic response of a slender marine structure was predicted using quadratic Volterra series. The wave-structure interaction system was identified using the NARX(Nonlinear Autoregressive with Exogenous Input) technique, and the network parameters were determined through the supervised training with the prepared datasets. The dataset used for the network training was obtained by carrying out the nonlinear finite element analysis on the freely standing riser under random ocean waves of white noise. The nonlinearities involved in the analysis were both large deformation of the structure under consideration and the quadratic term of relative velocity between the water particle and structure in Morison formula. The linear and quadratic frequency response functions of the given system were extracted using the multi-tone harmonic probing method and the time series of response of the structure was predicted using the quadratic Volterra series. In order to check the applicability of the method, the response of structure under the realistic ocean wave environment with given significant wave height and modal period was predicted and compared with the nonlinear time domain simulation results. It turned out that the predicted time series of the response of structure with quadratic Volterra series successfully captures the slowly varying response with reasonably good accuracy. It is expected that the method can be used in predicting the response of the slender offshore structure exposed to the Morison type load without relying on the computationally expensive time domain analysis, especially for the screening purpose.

Study on Volterra System for Variation of Metacentric Height in Waves and its Application to Analysis of Parametric Roll (볼테라 시스템을 이용한 파랑 중 파라메트릭 횡동요에 대한 연구)

  • Lee, Jae-Hoon;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.227-241
    • /
    • 2017
  • In this study, a Volterra system for the variations of metacentric height (GM) in waves is employed to simulate the parametric roll phenomena of ships in head sea condition. Using the present Volterra system, the transfer function of each harmonic component in the GM variation is computed for different ship models, including mathematical models and a real containership, and the results are validated through the comparison with the values obtained using the direct calculations based on a weakly nonlinear time-domain method. Then, a semi-analytic approach employing a 1-degree of freedom equation for roll motion is developed to simulate the parametric roll motions in irregular waves. In the derived approach, the nonlinear and time-varying restoring forces in the waves are approximated using the Volterra system. Through simulations of the parametric roll for different sea states, the effects of the 1st and 2nd-order harmonic components of the variations in the occurrence and amplitude of the parametric roll motions are investigated. Because of the strong nonlinearities in the phenomena, a stochastic analysis is conducted to examine the statistical properties of the roll motions in consideration of the sensitivities and uncertainties in the computations.