• 제목/요약/키워드: Time-Varying Velocity

검색결과 171건 처리시간 0.023초

속력변화를 고려한 비례항법유도의 최적성 해석 (Analysis on Optimality of Proportional Navigation With Time-Varying Velocity)

  • 전인수;이진익
    • 한국항공우주학회지
    • /
    • 제37권10호
    • /
    • pp.998-1001
    • /
    • 2009
  • 본 논문에서는 기존의 호밍유도법칙으로 널리 사용되는 상수 항법이득을 갖는 비례항법유도법칙이 속력 변화가 있는 경우에도 엄밀한 의미에서 최적해임을 보였다. 해석결과로부터 항법상수가 3인 경우 유도항력에 접근속력이 가중된 성능지수를 최소화하는 최적해임이 확인되었다. 비행체의 운동을 선형방정식으로 표현하고 속력변화를 고려하지 않은 기존 연구결과들과 달리 본 연구에서는 비선형 방정식을 기반으로 속력변화까지 고려하여 비례항법유도법칙의 최적성에 관한 보다 일반적인 해석 결과를 제시하였다.

축방향으로 이동하며 길이가 변하는 연속체의 진동특성: 스파게티 문제에 응용 (Vibration Characteristics of the Axially Moving Continuum with Time-Varying Length: Spagetti Problem)

  • 사재천;이승엽;이민형
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.385-392
    • /
    • 2001
  • Time-dependent frequency and energy of free vibration of the Spagetti problem, that is the axially moving continuum with time-varying length, are investigated. Exact expressions for the natural frequency and time-varying vibration energy are derived by dealing with traveling waves. When the string length is increased, the vibration period increases, but the free vibration energy varies as a function of both translating velocity and boundary velocity of the continuum. However, when the string undergoes retraction, the vibration energy increases with time, String tension together with non-zero instantaneous velocity at the moving boundary results in energy variation.

  • PDF

Recovery of 3-D Motion from Time-Varying Image Flows

  • Wohn, Kwang-Yun;Jung, Soon-Ki
    • Journal of Electrical Engineering and information Science
    • /
    • 제1권2호
    • /
    • pp.77-86
    • /
    • 1996
  • In this paper we deal with the problem of recovering 3-D motion and structure from a time-varying 2-D velocity vector field. A great deal has been done on this topic, most of which has concentrated on finding necessary and sufficient conditions for there to be a unique 3-D solution corresponding to a given 2-D motion. While previous work provides useful theoretical insight, in most situations the known algorithms have turned out to be too sensitive to be of much practical use. It appears that any robust algorithm must improve the 3-D solutions over time. As a step toward such algorithm, we present a method for recovering 3-D motion and structure from a given time-varying 2-D velocity vector field. The surface of the object in the scene is assumed to be locally planar. It is also assumed that 3-D velocity vectors are piecewise constant over three consecutive frames (or two snapshots of flow field). Our formulation relates 3-D motion and object geometry with the optical flow vector as well as its spatial and temporal derivatives. The linearization parameters, or equivalently, the first-order flow approximation (in space and time) is sufficient to recover rigid body motion and local surface structure from the local instantaneous flow field. We also demonstrate, through a sensitivity analysis carried out for synthetic and natural motions in space, that 3-D motion can be recovered reliably.

  • PDF

Enhanced data-driven simulation of non-stationary winds using DPOD based coherence matrix decomposition

  • Liyuan Cao;Jiahao Lu;Chunxiang Li
    • Wind and Structures
    • /
    • 제39권2호
    • /
    • pp.125-140
    • /
    • 2024
  • The simulation of non-stationary wind velocity is particularly crucial for the wind resistant design of slender structures. Recently, some data-driven simulation methods have received much attention due to their straightforwardness. However, as the number of simulation points increases, it will face efficiency issues. Under such a background, in this paper, a time-varying coherence matrix decomposition method based on Diagonal Proper Orthogonal Decomposition (DPOD) interpolation is proposed for the data-driven simulation of non-stationary wind velocity based on S-transform (ST). Its core idea is to use coherence matrix decomposition instead of the decomposition of the measured time-frequency power spectrum matrix based on ST. The decomposition result of the time-varying coherence matrix is relatively smooth, so DPOD interpolation can be introduced to accelerate its decomposition, and the DPOD interpolation technology is extended to the simulation based on measured wind velocity. The numerical experiment has shown that the reconstruction results of coherence matrix interpolation are consistent with the target values, and the interpolation calculation efficiency is higher than that of the coherence matrix time-frequency interpolation method and the coherence matrix POD interpolation method. Compared to existing data-driven simulation methods, it addresses the efficiency issue in simulations where the number of Cholesky decompositions increases with the increase of simulation points, significantly enhancing the efficiency of simulating multivariate non-stationary wind velocities. Meanwhile, the simulation data preserved the time-frequency characteristics of the measured wind velocity well.

축방향으로 주행하는 현의 횡진동 제어 (Transverse Vibration Control of an Axially Moving String)

  • 류두현;박영필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.579-584
    • /
    • 2000
  • In this study. the time varying boundary control using the right boundary transverse motion on the basis of the energy flux between the moving string and the boundaries is suggested to stabilize the transverse vibration of an axially moving string. The effectiveness of the active boundary control is showed through experimental results. Sliding mode control is adopted in order to achieve velocity tracking control of the time varying right boundary to dissipate vibration energy of the string effectively. For the unmoving and moving string at various velocity under various tension the performance of the transverse vibration control using the time varying right boundary control with the suggested control scheme is experimentally demonstrated.

  • PDF

미지의 파라미터를 갖는 이동 로봇들을 위한 선도-추종 방법 기반 적응 군집 제어 (Leader-following Approach Based Adaptive Formation Control for Mobile Robots with Unknown Parameters)

  • 문써레;박봉석;최윤호;박진배
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1592-1598
    • /
    • 2011
  • In this paper, a formation control method based on the leader-following approach for nonholonomic mobile robots is proposed. In the previous works, it is assumed that the followers know the leader's velocity by means of communication. However, it is difficult that the followers correctly know the leader's velocity due to the contamination or delay of information. Thus, in this paper, an adaptive approach based on the parameter projection algorithm is proposed to estimate the leader's velocity. Moreover, the adaptive backstepping technique is used to compensate the effects of a dynamic model with the unknown time-invariant and time-varying parameters. From the Lyapunov stability theory, it is proved that the errors of the closed-loop system are uniformly ultimately bounded. Simulation results illustrate the effectiveness of the proposed control method.

Numerical simulation and experimental study of non-stationary downburst outflow based on wall jet model

  • Yongli Zhong;Yichen Liu;Hua Zhang;Zhitao Yan;Xinpeng Liu;Jun Luo;Kaihong Bai;Feng Li
    • Wind and Structures
    • /
    • 제38권2호
    • /
    • pp.129-146
    • /
    • 2024
  • Aiming at the problem of non-stationary wind field simulation of downbursts, a non-stationary down-burst generation system was designed by adding a nozzle and program control valve to the inlet of the original wall jet model. The computational fluid dynamics (CFD) method was used to simulate the downburst. Firstly, the two-dimensional (2D) model was used to study the outflow situation, and the database of working conditions was formed. Then the combined superposition of working conditions was carried out to simulate the full-scale measured downburst. The three-dimensional (3D) large eddy simulation (LES) was used for further verification based on this superposition condition. Finally, the wind tunnel test is used to further verify. The results show that after the valve is opened, the wind ve-locity at low altitude increases rapidly, then stays stable, and the wind velocity at each point fluctuates. The velocity of the 2D model matches the wind velocity trend of the measured downburst well. The 3D model matches the measured downburst flow in terms of wind velocity and pulsation characteris-tics. The time-varying mean wind velocity of the wind tunnel test is in better agreement with the meas-ured time-varying mean wind velocity of the downburst. The power spectrum of fluctuating wind ve-locity at different vertical heights for the test condition also agrees well with the von Karman spectrum, and conforms to the "-5/3" law. The vertical profile of the maximum time-varying average wind veloci-ty obtained from the test shows the basic characteristics of the typical wind profile of the downburst. The effectiveness of the downburst generation system is verified.

가변 시간 지연에 대해 안정한 쌍방향 텔레오퍼레이션 (A new approach to passive bilateral teleoperation with varying time delay)

  • Zhang, Changlei;Lee, Yee-Dong;Zhang, Yuanliang;Chong, Kil-To
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.23-25
    • /
    • 2005
  • This paper is devoted to the passivity based control in bilateral teleoperation for varying time delay. Toimprove the stability and task performance, master and slave in bilateral teleoperation must be coupled via the network through which the force and velocity are communicated. However, time delay existing in the transmission channel is a long standing impediment to bilateral control and can destabilize the system, even if the system is stable without time delay, In this paper, we investigate how the varying time delay affects the advanced teleoperation stability and results in an out-of-control status. A new approach based on passivity control has been bilaterally designed for both the master and slave sites and the simulation result will verify that our approach is better and effective for passive bilateral teleoperation.

  • PDF

속도경계제어를 이용한 축방향 주행 현의 횡진동 제어 (Transverse Vibration Control of an Axially Moving String by Velocity Boundary Control)

  • 류두현;박영필
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.135-144
    • /
    • 2001
  • In this study, the time varying boundary control using the right boundary transverse motion is suggested to stabilize the transverse vibration of an axially moving string on the basis of the energy flux between the moving string and the boundaries. The effectiveness of the active velocity boundary control is showed through the FDM simulation results. Sliding mode control is adopted in order to achieve velocity tracking control of the time varying right boundary to dissipate vibration energy of the string effectively. Optical sensor system for measuring the transverse vibration of an axially moving string is developed, and the angle of the incident wave to the right boundary, which is the input of the velocity boundary controller, is obtained. Experimental research is carried out to examine the validity and the performance of the transverse vibration control using the suggested velocity right boundary control scheme.

Seismic Tomography using Graph Theoretical Ray Tracing

  • Keehm, Young-Seuk;Baag, Chang-Eob;Lee, Jung-Mo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • 제25권1호
    • /
    • pp.23-34
    • /
    • 1997
  • Seismic tomography using the graph theoretical method of ray tracing is performed in two synthetic data sets with laterally varying velocity structures. The straight-ray tomography shows so poor results in imaging the laterally varying velocity structure that the ray-traced tomographic techniques should be used. Conventional ray tracing methods have serious drawbacks, i.e. problems of convergence and local minima, when they are applied to seismic tomography. The graph theretical method finds good approximated raypaths in rapidly varying media even in shadow zones, where shooting methods meet with convergence problems. The graph theoretical method ensures the globally minimal traveltime raypath while bending methods often cause local minima problems. Especially, the graph theoretical method is efficient in case that many sources and receivers exist, since it can find the traveltimes and corresponding raypaths to all receivers from a specific source at one time. Moreover, the algorithm of graph theoretical method is easily applicable to the ray tracing in anisotropic media, and even to the three dimensional case. Among the row-active inversion techniques, the conjugate gradient (CG) method is used because of fast convergence and high efficiency. The iterative sequence of the ray tracing by the graph theoretical method and the inversion by the CG method is an efficient and robust algorithm for seismic tomography in laterally varying velocity structures.

  • PDF