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Recovery of 3-D Motion from Time-Varying
Image Flows

. Kwang Yun Wohn and Soon Ki Jung

Abstract

In this paper we deal with the problem of recovering 3-D motion and structure from a time-varying 2-D velocity vector field.
A great deal has been done on this topic, most of which has concentrated on finding necessary and sufficient conditions for
there to be a unique 3-D solution corresponding to a given 2-D motion. While previous work provides useful theoretical insight,
in most situations the known algorithms have turned out to be too sensitive to be of much practical use. It appears that any
robust algorithm must improve the 3-D solution over time. As a step toward such algorithm, we present a method for recovering
3-D motion and structure from a given time-varying 2-D velocity vector field. The surface of the object in the scene is assumed
to be locally planar. It is also assumed that 3-D velocity vectors are piecewise constant over three consecutive frames (or two
snapshots of flow field). Our formulation relates 3-D motion and object geometry with the optical flow vector as well as its
spatial and temporal derivatives. The linearization parameters, or equivalently, the first-order flow approximation (in space and
time) is sufficient to recover rigid body motion and local surface structure from the local instantancous flow field. We also
demonstrate, through a sensitivity analysis carried out for synthetic and natural motions in space, that 3-D motion can be

recovered reliably.

I. General Description of the Method

When an object moves relative to a viewer, the projected
image of the object also moves in the image plane. This 2-D
image motion reveals the relative 3-D motion of the object
as well as the structure of the visible part of that object. By
analyzing this evolving image sequence, one hopes to extract
the instantaneous 3-D motion (described by six degrees of
freedom) and surface geometry of the object. The path from
time-varying imagery to its corresponding 3-D description
may be divided into two relatively independent steps,
although a one-step approach may be possible [15]:

1. computation of 2-D image motion from the image
sequence, and

2. computation of 3-D motion and structure of objects
from 2-D motion.

This paper deals with the latter issue: computation of 3-D
object motion and its structure which undergoes rigid body
motion relative to a monocular camera. Throughout this
paper, we assume that the 2-D motion is already available in
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an appropriate representational form, which we will discuss
later.

It is well known that the human visual system can solve
the problem of recovering 3-D structure from motion
information [10, 14, 26]. A number of computational studies
have examined possible algorithms for performing this task,
assuming 2-D motion measurements are already available.
The relations between 2-D motion and 3-D scene are
formulated in terms of non-linear equations. This
non-linearity prevents us from solving them in a trivial way,
which makes the problem mathematically interesting. In some
restricted domains (e.g., known angular motion, known object
structure) the formulation and solution procedure become
much simpler [3, 8, 20].

Since the scheme used to interpret 2-D motion information
depends on the kind of 2-D motion representation utilized,
the very first consideration is the choice of representation for
2-D image motion. One may use the motion of distinct,
well-isolated feature points. Classic work includes Tsai and
Huang [22] which proved that seven points all of which lie
on a single rigid-body and two perspective views are
sufficient in determining their relative position in 3-D space
uniquely, and Ullman [24] which showed that three distinct
orthographic views of four non-coplanar points yield unique
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solution. Variations and extensions are abundant in the
motion literature. See [1] for a survey.

The other approach uses the continuous flow field within
a small region [16, 17]. Waxman and Ullman showed that
the partial derivatives up to the second order of flows
revealed the 3-D motion [27]. Later Waxman et. al. devised
a closed-form solution for the same formulation [29].

Although 3-D motion is, in principle, recoverable from
either representation, it turns out that neither scheme
produces the reliable 3-D solution when they are applied to
natural images in which various noise effect is not negligible.
Those methods perform successfully when the points are well
separated (or the size of neighborhood is relatively large), but
as can be expected, they encounter severe difficulties when
the points get close to each other (or the size of nei-
ghborhood gets small) since the image velocities at nearby
points are usually nearly identical. While either scheme has
its own merits and drawbacks the latter approach (i.e. the
optical flow field) leads to stable solutions provided that the
partial derivatives of the flow field up to the second-order
are available [27]. Waxman and Wohn [28] developed the
method of extracting the partial derivatives of the flow field
directly from evolving contours over time. The partial
derivatives of the flow were called “deformation parameteré”
since they described the local deformation of a small
neighborhood in the image. It has been demonstrated that the
combined algorithms of 2-D flow computation and 3-D
motion computation are quite stable with respect to input
noise and variations in surface structure. Due to the
non-linearity associated with the 3-D motion computation, no
rigorous analysis on the behavior of this algorithin has been
conducted so far, but it appears that the second-order
derivatives determine the accuracy of the 3-D solution.
However it is very questionable whether these second-order

derivatives can be obtained teliably enough so that the 3-D-

parameters obtained by the algorithm are meaningful,
especially when the field of view decreases to under 20° .
The approach developed here is based on the first order
derivatives of the velocity field. Our experiments confirm
that the first-order derivatives can be recovered with greater
accuracy than the second-order ones. In our recent
experiments conducted on various natural images, we found
that the error of first-order derivatives can be reduced to
within 5% while the second-order derivatives are obtained
with an accuracy of only 30%. However, the knowledge of
first-order derivatives at one point in time does not provide
enough constraints for solving for 3-D motion and structure.
We obtain additional constraints by introducing the partial
derivatives of the velocity field with respect to time. The
new representational scheme for 2-D motion then consists of
a velocity vector, its first-order spatial derivative' and its
first-order temporal derivative. There are a total of eight
parameters, and we shall call them linearization parameters

of the velocity field, since they are the parameters of the
first-order estimate (or linearization) of the velocity vector
field. The linearization parameters are obtained from two
snapshots of image flow field, or three image frames.
However, in practice, one may want to utilize more frames
to improve the numerical stability and accuracy.

The idea of utilizing larger number of frames has been
proposed by several researchers. Earlier exaniples inclnde: for
a restricted class of rigid-body motion [11], for semi-rigid
motion under orthographic projectiéon [25], and for
determining the focus of expansion (or constraction) [4).
Recently, more elaborated framework for the recovery of
motion during an extended time interval has been proposed.
Correlation between successive frames is expressed in terms
of the smoothness of 3-D motion, which provides additional
motion constraints. In [30] the smoothness of motion was
interpreted as the polynomial curve trajectory with constant
angular velocity. In [7] both translation and rotaticn were

‘modeled as the truncated Taylor series. Baker and Bolles [2]

seeks for constraints from dense set of spatiotemporal
images. Iu and Wohn [12] investigated the 3-D motion of a
single feature points.

In our algorithm, the surface of the object in the scene is
assumed to be locally planar. It is also assumed that 3-D
motion parameters are locally constant over three consecutive
frames (or 2 snapshots of the velocity field). Our formulation
relates the 3-D motion and object geometry to the 2-D
velocity vector and its spatial and temporal derivatives. The
linearization parameters, or equivalently, the first-order app-
roximation (in space and time) of the velocity field, is
sufficient to recover rigid body motion and local surface
structure. We also demonstrate, through a sensitivity analysis
carried out for synthetic and natural motions in space, that
3-D inference can be made reliably.

In Section 2, we begin our discussion of the 3-D motion
recovery process by establishing a relation which relates the
2-D parameters (linearization parameters of the velocity field)
to the parameters of the 3-D object motion and structure. The
relationship is formulated in terms of eight non-linear al-
gebraic equations. This formulation requires that the surface
of the object be approximated locally by a plane and that
3-D motion parameters do not change over a short period of
time. From this point of view there are families of degenerate
cases for which the temporal derivatives of velocity field do
not provide sufficient information. To resolve these cases the
time derivatives of the spatial derivatives may be used. In
some other cases, multiple solutions may result due to the
non-linearity. The complete solution tree will be presented.
We conduct a robustness analysis of the algorithm in Section
4. Of course violation of the initial assumptions on object
motion and structure usually result in- error in the 3-D

_solution. The effect of the temporal change of the -3-D

motion parameters will be evaluated in Section 4.2. We
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demonstrate that such effects should be minor in a range of

practical applications. The experimental results on both
synthetic data and real time-varying images are presented in
Section 5.

Fig. 1. 3-D coordinate system and 2-D image coor-
dinates with motion relative to an object.

I1. Spatio-Temporal Deformation of the
Image

In this section we shall give the relations between the 3-D
parameters we wish to recover and the measurable pa-
rameters of the 2-D motion. The camera model we use is the
perspective projection and the coordinate system is the same
as the one introduced in [17] (Figure 1). We shall consider
only the region near the center of the image plane because
we can always choose a proper image coordinate system so
that the point being discussed is at the center of the image
plane.

1. The 3-D and 2-D Parameters

We represent relative motion in the terms of the viewer’s
motion. The viewer moves with the translational velocity

V ={Vy, Vy, V217 , and the rotational velocity

Q= [2x, 2y, 2,17
velocity is irrecoverable in principle, we are only concerned
with recovering the .normalized translational velocity

Since the absolute translational

(VX V¥ V=5 (Va, V. V2, (1)

where Z is the absolute distance from the viewer to the

object. When speaking of 3-D structure, we are referring to
the surface normal at the point of interest. We represent this
as

n = (p,0.D)/V A+ +4d) ()

and will work with (p, g).

Let us assume that the image flow v(x,y) is given. If an
image sequence of more than three images is available (or
equivalently, if more than two snapshots of the 2-D velocity
vector fields are given), we can describe the velocity field as
a function of time as well. So we assume we are given a
function v (x, y, t). Taking the partial derivatives of

v(x, b, we get six terms

. ov, 0Jv,
[vx'x vx_y] = _Ql = ax ay ’ 3
VUsx Uy, 9x avy aUy ( )
ox dy
vy
[ vx. .‘] = ﬂ = avt
Uyt ax v,
at
For convenience we have written %’;’ as v, g, where the

first subscript indicates a component of v and the second

subscript indicates the variable with respect to which a
differentiation is performed.

Caution: Do not confuse this notation with the notation used
for a second-order derivatives, in which no comma appears.
We have eight quantities {v,, vy, Vv, Uiy, Vyxs Uyys Vst
v, 4 — the linearization parameters of the velocity field.
They are measurable from (at least) two snapshots of the 2-D
velocity fields. We shall see that these eight parameters
provide enough constraints to determine ( V', 2 ) and
(»,q) in the generic case. However, in some special case
these eight parameters fail to be independent, and do not
provide enough information to permit one to solve for the
3-D parameters. In these cases we may use four additional
measurements

v Py v, 9%,

xaxt Vxyt| = = ato oto . 4)

[ Uy xt vy,yt] 9o x azyf 821)-3,} ’ (
dtox  dtdy

“

Again, the subscript before comma “,” indicates a component
of v and the subscripts after the comma indicate the
variables with respect to which a differentiation is performed.
These quantities can also be obtained from a sequence of
more than two snapshots of the velocity field. However, as
we have pointed out, these higher-order derivatives recovered
may contain larger error than the first-order ones. So we
shall not use them unless when it is necessary.

2. Spatio-Temporal Deformation Equations

In order to relate the above parameters to the parameters
of the 3-D motion and structure, we shall make two
assumptions about the surface of the object and the type of
motion:

1. The surface of the object is smooth, and for the object

in a fixed position, the surface can be approximated
locally by
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Z(t)=Z(D+p(DX(D+a() Y(D. &)

2. The motion of the object is smooth. V and © can be
regarded as constants during the short observation
period. Since we are using the viewer’s motion
approach, this means that in a short time period, the
viewer moves with constant speed and rotates with
constant angular velocity.

These assumptions reflect the spatial smoothness of object
surfaces and the temporal smoothness of the motion of
physical objects. Any object in the real world is likely to
satisfy these two assumptions except for some singular
situations, which are beyond of the scope of this paper.
Violation of these two assumptions will cause errors. We
shall discuss this issue later.

Suppose a point P in space is located at X () = (X(9,
Y(9,Z(d), and the coordinate system (viewer) moves with
a relative translational velocity V and rotational velocity
Q. Then

X(@=-[V®+20»x X®], ©

and the corresponding image point has the 2-D velocity
vector

it

vdx, v, 8
v(x, 5.0

{x F3 — S+ exdd-1+D2UD +3040)  (7)
v 22— B2 )20 — 2K ) ~x040).

It

These equations define an instantaneous 2-D° velocity

vector field and assign a unique 2-D vector v to each image
_point (x,y) at time ¢. At the center of the image the
velocity vector is simply '

#
v.V

Equations (7) constitute two independent relations among
seven unknowns. The various existing techniques for
recovering the 3-D parameters differ in the way that they add
additional constraints. We shall employ spatial coherence of
the velocity field. For this purpose we will have to use our
first assumption.

Using Equation (5), differentiating Equations (7) and
evaluating them at the origin, we get

-V —2 - 8.a)
— V)y(' +Q; (8.5 ®

Urx = pVX’ + VZ’
U,y — qVX' +'QZ 9
Vyy = PV)'/' —.Q? ( )
Uy y = qu + VZ .

The left sides of the equations are measurable quantities
which represent the relative motion in an infinitesimal
neighborhood (one may prefer to say the “eometrical
deformation”™of the “low field”. The above process adds four
relations while replacing the unknown Z with two
parameters p and g¢. So we now have six independent
relations among eight unknowns.

Unlike [17] and [27], in which the additional constraints
are obtained by introducing high-order derivatives of the
velocity field, we obtain additional constraints by analyzing
the way the velocity field changes over time. From Equations
(7) one can observe that the velocity changes in time only
when

1. The 3-D motion parameters are changing in time, andfor

2. The object distance Z is changing in time.

We have assumed that the 3-D motion parameters do not
change during a short time period. To calculate the change
in object distance, let us consider how a planar patch moves
in 3-D space. From Equation (5) we have

dZy—dZ+ pdX+ Xdp+qdY+ Ydg=0.
Substituting Equation (6) into the above equation,

dZ,
Tto + V= pVx—aVy—pZiR2y+qZoRx

+{- 2 — 0100, ~ 10y + pa0:) X
{40+ 00, + 05— 12} Y = 0,

dt
Thus
dz,
- =V o Vi 29 +a(Vy —2) (10)
0
@ = Qy+aQ2;+0°Qy—1alx (11)
%‘f = —Qx—12;—¢'Qx+1aLy.

Differentiating Equations (7) with respect to time, eva-
luating the results at the origin and utilizing Equation (10),
we get

Ux_[ = Vx’a )
{oee 2 0%, a2)
where
=—Vy —pv,—qv, '- 13

describes the rate of depth change in time.

Now we have eight equations (8), (9) and (12), with eight
unknowns ( V, 2 and p, q).
The quantities v,,v, 4 v, On the left are measurable from
two snapshots of the velocity field. These are the main
equations we use in solving the motion problem. As
mentioned before, in certain degenerate cases we need to use
additional equations. These additional equations are obtained
by measuring the temporal change in the spatial derivatives.
Differentiating Equations (9) with respect to time, and
utilizing Equations (10) and (11), we have

Uyt = — VZ’8+ VX’mx

Vest = Vx:my (14)
Uyt = VY my

vy = —VZ78+Vym,

where
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m, =  pr+qQ;+Qy
my, = qr—p2;—8x 15)
y = Vi/—pVx —qVy.

The four quantities at the left sides of the equétions are also
measurable from two snapshots of the image flow field.

I1I. Recovery of 3-D M@ttﬁa;lm

Before we begin to discuss the algorithm for computing
3-D motion, let us briefly mention the problem of estimating
2-D motion in the form of the linearization parameters. In
principle, the linearization parameters may be obtained first
by recovering the image flow and secondly by taking the
partial derivatives of the flow field. But since the
differentiation process will amplify noise, we are unlikely to
recover these partial derivatives accurately.

In our experiment conducted on the natural time-varying
image, contours (interpreted as the continuous edge segments
extended over certain length) are used as a primary source of
information. However, it is well known that both components
of the image flow vector cannot be recovered locally along
contours alone [19]. As a contour evolves through an image
sequence, one can, in principle, measure the normal flow
around the contour only, while the motion along the contour
is invisible.

Waxman and Wohn developed an algorithm, named
velocity functional method, that recovers the image flow from
evolving contours [28]. The algorithm considers the se-
cond-order flow approximation as the starting point, and then
computes the best-fitting second-order flow from the local
measure of normal flow. As predicted from Equation (7), for
planar surfaces ideal data (in other words, perfect measure of
normal flow) yields the exact result. For curved surfaces the
second-order approximation is not exact and it yields
truncation error even for ideal data. This error depends on
the size of the field of view (defined by a contour grouping)
as well as the geometry (mainly surface curvature) of the
corresponding patch.

For our purpose, although the second-order terms will not
be used at the later stage of 3-D motion computation, they
are included here in order to “absorb” noise, and thereby to
obtain less biased spatial derivatives. Temporal derivatives
may be obtained by sibtracting the spatial parameters over
two consecutive image frames. Alternatively, as a better
approach, the velocity can be approximated as the truncated
Taylor series in the spatio-temporal coordinates;

2 2 1
— (i, k) x
vdx, 9,8 = iz="o ;‘go lez::ov ’ i! % k! (16)
2z 2, i ¢
v(x. 3.0 = iz=:0 ;‘z=:0 ;z2=ov’(' lk))z‘;’!_%]——/;!—'

The linearization parameters are obtained from the coef-

ficients of polynomials, in a similar manner to the velocity
functional method.

(Uz,;yvy,t) 71; 0 (vz,tivy,t) = O

V’:O

~

no solution

@ v)j(V Q vV

unique
Q 0 75 0 ; Q Q, =0
unique
dual unique
Fig. 2. Soulution tree for 3-D structure and motion
algorithm. '

Once we obtain the linearization parameters, we proceed to
recover the 3-D motion and structure of the surface patch.
The eight equations to be solved — Equations (8), Equations
(9) and Equations (12) — involve eight unknowns. We can
prove that in the generic case when (v,,v,,)#0 and
V7 #+0, we can solve for all the 3-D parameters uniquely
from these eight equations. In some other cases these eight
equations do not provide enough constraints to determine the
3-D motion and structure. We must use the additional
constraints of Equations (14), and in these cases dual
solutions may exist. The "worst” case is when all the time
derivatives v,, and v, , are zero, ie. the velocity vectors
in a neighborhood of the center are constant in time: our
method fails to recover the 3-D parameters. However, it is
possible to resolve the 3-D parameters by knowing the same
set of linearization parameters at another point where not all
the time derivatives are zero. If v,,= v, =0 for all points
in the image, the 3-D motion and structure must be trivial.
The detail derivation can be found at Appendix A in [32].
Here we give only the solution tree (Figure 2). Paths
indicated by solid lines represent solution procedures
requiring only first-order derivatives of the velocity filed
(Equations (8), (9) and (12)), while those consisting of
dashed lines require second-order derivatives (Equation (14)).

IV. Robustness of the Algorithm

Our algorithm is “exact” in the sense that if the exact 2-D
parameters are given and the two assumptions in Section 2
are satisfied, then the algorithm will produce the exact 3-D
solution: There is no search involved. However, in practice
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we should never expect all these conditions to be fully
satisfied. In this section we are going to discuss what will
happen if the two assumptions are violated. The sensitivity of
the algorithm with respect to noise in the input 2-D
parameters will be demonstrated in the next section.

1. Error Caused by Non-Planar Surface

Our analysis is valid for planar surfaces. What about
non-planar surfaces? In this section, we argue that non-
planarity is not much the determining factor as long as the
surface is reasonably smooth, and the computation is
performed within a small neighborhood. ‘

Suppose the surface of the object is not planar but still
smooth. Then we expand it in a Taylor series:

Z = Zyg+pX+qY+ ﬁz +2 a,;Xi}’j]. an
n= ttj=n

Using Equation (17) instead of Equation (5) and repeating
the analysis of Section 2, we obtain exactly the same set of
equations as before. This is not surprising since we used only
the first order derivatives of the velocity vector field. In
theory, then, so long as the surface is smooth, no error will
be caused by assuming the surface is planar. In practice,
however, since one must consider a small but finite
neighborhood in the image plane in order to evaluate the
derivatives, non-planarity causes an error if the higher order
terms are large. Thus, we require the high order terms to be
reasonably small in a small region. Non-planarity will also
cause errors in the velocity field during the 2-D motion
recovery procedure [28]. However, experiments in the next
section show that our algorithm is quite stable with respect
to the changes in the surface structure.

2. Error Caused by Non-Constant Motion

Since in the preceding sections we assumed that the 3-D
motion parameters were constant with respect to time, we
shall get additional terms in Equations (12) and (14)
involving time derivatives if the real motion is not constant.
These terms will cause errors in the final result. In this
section we are going to estimate the errors in the 3-D
parameters caused by non-constant motion; we will do this
only in the generic case, in which only Equations (12) were
used. A

Suppose acceleration exists:

VX ‘QX
V = Vy N .Q = .Qy
VZ -QZ

Then Equations (12) become

vey = Vié6—dv,, 18
{v,,_, = Vyé—dv,,, s

where
dvx", = gx + .Qy
v ,
dl)y’; = Zy - .QX

are the additional terms caused by acceleration. Let

v = [vx,tv Uy"]T > th = [dvx_,, dvy_p]T > and
define a vector w = v,+ dv, . We can write Equations
(18) as ’

W, = Vx’a .
{w, = Vy’s. (19)

We can see that, if we could measure », and Wy, ‘then
we would have no problem to solve for the 3-D Aparameters.
Since we can only measure v,, which is only part of w,
if we use v, as an estimate of w then the 3-D parameters
we obtain will be inaccurate. The size of errors in the 3-D
parameter estimates depends on how big the additional terms
dv,.and dv,, are. '

In Appendix B of [32] we give the detailed dé}iri‘{fati(‘)‘n..
The errors on the 3-D parameters turn out to be proportional

| _dvil

IRZE
v, : Acceleration which causes changes in the magnitude of

to , the “relative change” of "v, perpendicular to

image motion does not affect the solution, whereas
acceleration which changes the direction of image motion
contaminates the 3-D solution. In the next section we give
the experimental results for this type of error.

V. Experiments

In this section, we verify the result of the sensitivity
analysis in Section 4 by conducting a few experiments with
synthetic data, and synthetic and real image sequences.
Again, the expeiments confirm the robustness of our
approach. :

1. Experiment on the Sensitivity of the Algorithm

Besides the error sources common to any early vision
processing, such as errors due to digitization, camera
distortion, noise, etc., there are other sources of error related
to the particular 2-D motion recovery method being used.
The method we used in our experiments is the contour-based
method with iterative improvement [33). In this particular
method and any other method that utiliz¢s the evolving edge
contours, several factors must be considered: 1) Imperfect
contour extraction and false matching, 2) Imperfect normal
velocity estimation and 3) Inaccurate motion model. All the
factors mentioned above affect the accuracy of the estimate
of the velocity field (or the linearization parameters) and
therefore affect the 3-D solution. In the first experiment we
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test the sensitivity of the algorithm with respect to the noise
in the input 2-D parameters by using-synthetically generated
2-D motion as the input to the algorithm. The whole
experiment procedure is as follows.

1. First, a set of 3-D parameters P;={p,q, V', 9}, is
given. ‘

2. Then a set of 2-D parameters Py = {v,, vy, Uz 2, Ux y» Uy,
Uy Vs Uy 4 is generated from P; according to
Equations (8), (9) and (12).

3. Define Py' = {u,, uy, e, ey, Uy, Uy y, Usty Uy s
where

{ e Va a=zx,y% B=xyL

7 Vet Vg, 5
Each element # of P, is perturbed by rand-om noise

to obtain .

u=u(1+Ny), (20)

where y is a random variable uniformly distributed over
the interval [—1,11 , and N, is the noise ratio as in
Table 1.

Table 1. Statistics for 6 simulations.

N, 1av1 lagl 1dnl ldz|
v VI ] lal 2

0.000000 % | 0.000000 % | 0.000000 % | 0.000000 % | 0.000000 %
1.000000 % | 0.307560 % | 0.311286 % | 0.322219 % | 0.455680 %
2.000000 % | 0.508793 % | 0.550297 % |0.837837 % | 1.216925 %
3.000000 % | 0.604547 % | 0.716452 % | 1.560563 % | 2.304316 %
4.000000 % | 0.596820 % {0.809087 % |2.512627 % |3.752289 %
5.000000 % | 0.491979 % | 0.827452 % |3.727105 % | 5.612659 %

4. From the perturbed #’s, a set of noisy 2-D parameters
P2={ Ugy Uyy Uxxs Uxys Uy xs Uyy, Uxts Uy,t} is gen-

erated as follows;

‘ Yo = Ua a=2x,y B==xy,t.
Usg = Ugp™ Ua,

5. Finally, a set of 3-D parameters P,={ 5, ¢, V', 8}
is obtained from our 3-D motion recovery algorithm by
using P, as input data.

We compare the resulting 3-D parameters obtained from

the noisy data and the ideal 3-D parameters by measuring
relative errors:

_ v - v
ey = lv,l
. - lo-2
2 ,D,L
o _ ln'—11
n |ﬁr| ’

where n is defined in Equation (2), and n=[5,4,1]1 . A
typical result is shown in Table 1, where the 3-D parameters

used are  V'=(0.5,0.4,0.3)7, 2=(-20" 10" ,30° )7,
and (p,q)=(tan30" , tand5" ).

One can see that the error in the result is fairly linear to
the error in the input 2-D parameters. We have found that
perturbations of about 20 % in the velocity field can be
tolerated down to fields of view of about 10" .

2. Experiment on Non-Constant Motion

In the second experiment, we test how non-constant 3-D
motion causes errors in the result of our algorithm. (See
Appendix B in [32] for the theoretical analysis). In these
experiments we add certain accelerations randomly to the
translational and- rotational velocities to see how they affect

the measurement % and the 3-D parameter estimates.
i

* The accelerations are added in accordance to

wo=owNy, o< {Vy,Vy,V/,Qx Qv 25,

where y is the random variable as in Equation (20) and
N,=5%. Three examples are tested.
Example 1:

0.2 10° .
vio= -0zl e= |- |0 [ =[]
-0.3 5° q. tan 30
with
V'l Vx 4.1% Qx/0x 3.7%
Vyivy | = [—3.7% ]; Ovl2y | = [3.6% ]
Vo IVy —3.6% 2,19, 1.8%
So
[v,_,] _ [—0.10 ] [dv,,,] _ [ 0.0018
Uyt 0.10 1" [av,, —0.0140 |
and
L dvel o oano,.  Lavitl oo
| V[l “‘9.93/); | th "‘7.8/.).

Example 2: For V'=(0.1,0.2,0.37, 2=(0" ,-20" ,
45° YT and (p,q)=(tan —45° ,tan30° ), the error pro-
pagates to the 2-D measures to yield;

L
Ldvd _ g gro; Lfi;‘ii—' = 11.81%.

| Vt‘

Example 3: For V'=(-0.2,-0.2,0.3)7, 2=(10" ,-10" ,
100 )7 and (p,g)=(tan30° ,tan45" ), the error pro-
pagates to the 2-D measures to yield;

! thl
[ v

| dvil
|V1|

=3.85%; =3.77%.
The errors caused by non-constant motion are about the same

| avil
|V1l .

order or magnitude as

3. Experiment on Synthetic Images

Next, we test the algorithm when edge contours are
extracted perfectly. We still need to compute the linearization
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parameters from the edge sequence before we solve for 3-D
motion. In this experiment three synthetically generated
images were used. The frames are of size 256 by 256 pixels,
and the scene is of two ellipses on a plane defined by
Z=10+pX+qY with V'=(0.06,0.83, -0.00)7, @=(0" ,
0° ,0° )T and (p,q)=(tan30° ,tand5" ). The images of the
ellipses are shown in Figure 3(a). Normal velocities along the
contours were measured from the pair of consecutive images
(Figure 3(b)). The iterative 2-D motion recovery procedure
[33] using the image flow model of Equation (16) was used
to obtain the velocity field as of Figure 3(c).

(fj 7 ey
/;‘/ I\_’// ”/ |

i \\‘ ( ﬁ\‘\\ ./ ™
e’ A \\\_/’\‘ |
(a.1) frame #1 (a.2) frame #2 (a.3) frame #3

NN w@\\
N N GENEN
O ~~ AN

ol
< YRR
. & IS NN NN
e e TSN N
®) ©

Fig. 3. Recovering optical flow from evolving contours.
(a) contours on the image planes as input (3
frames are shown). (b) measured normal flow
along the contours (from frame #1 and #2). (c)
optical flow field recovered.

The linearization parameters were recovered with 7% of
error. The 3-D parameters computed from these velocity
fields are: V’=(0.059,0.028, —0.038)", ©@=(-0.0021" ,
0.00064° , —0.00071° )7 and (p,q) = (tan31.87° , tand6.
26° ), which yields e¢y=2.8% and e,=4.7%.

4. Experiment on Real Images

Figure 4(a) shows four consecutive images obtained from a
natural scene. A CCD camera with known view angle and
focal length was attached to a robot arm so that the motion
could be controlled. The images were 512 by 512 pixels in
size with 8 bits per pixel, but were subsampled to 256 by 256
for computational consideration. The motion parameters and
the orientation of the object are V' =(0.065,0.031,
—0.023)7 at the first frame, £=(0" ,0° ,0° )7, and (p,
g)=(—tan5.4° ,—tan24.8" ). V and Q werg kept con-
stant, but because of the change in Z the relative translation

V'’ changed. The evolution of zerocrossing contours from the
first frame to the second frame is illustrated in Figure 4(b).

Figure 4(c) shows the 2-D velocity vector fields recovered
(along zerocrossing contours) using the iterative motion
recovery procedure [33] with the second-order flow model
over the entire filed of view. Unlike for the previous
experiments, the temporal derivatives were obtained by
subtracting the spatial parameters over two successive frames.
The 3-D parameters computed from these are V’'=
(0.0057,0.035,0.0022) ", @=(-0.75" ,0.53° , —0.087" )",
and (p, @)=(—tan2.5 , —tan21.7° ). er, the relative error
in the translational velocity is 12.8%. The error in the
rotational velocity is within 1° , while the surface orientation
was obtained within 3° of error. A few other experiments
under the similar setting have been conducted resulting in the
similar outcome.

(a1 @@2)

Fig. 4. Experiment on real images. (a) Four frames of
input image. (b) Superimposed zerocrossing
contours. The contours of frame 1 are shown in
white, and those of frame 2 are shown in black.
(c) Full flow recovered.

5. Summary of Experiments

The above experiments suggest that this method is quite
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robust. The error in 3-D motion parameters is proportional to
the error in the linearization parameters. In an unstructured
environment which generates images whose complexity is
comparable with the images we have used in this paper, the
linearization parameters could be recovered within 10% of
error. On the other hand, second-order derivatives of image
flow which other Eulerian approaches [21, 27] rely on are
totally useless under the presence of noise and digitization
effects.

Although many independent factors affect the accuracy of
the 3-D solution, we have found, through various
experiments, that the temporal derivatives »,, and v, , play

the major role. The performance drops as the temporal

derivatives reduce, and finally when the temporal derivatives

become near zero, the method switches to another branch of
solution tree (Case 2) looking for additional constraints from
the higher-order image formation. In this case, the algorithm
performs as well (or bad) as the existing methods [21, 27].
Other noteworthy observations are: 1) The method breaks
down when the field of view (or the size of neighborhood in
which the linearization parameters are evaluated) is smaller
than 6~8° . This is consistent with the simulation result
reported in [28]. The method of [28] utilized the second-
- order deformation and broke down when the field of view
decreased to 12° . 2) 3-D motion is recovered quite
accurately when there is a large translational motion along
Z-axis. This is consistent with the experimental result in [9]
for the same reason.

VI. Concluding Remarks

We have presented an algorithm which recovers 3-D
structure and motion from the linearization parameters — the
parameters of the first-order estimate of the velocity vector
field. In most cases, these parameters can be recovered quite
reliably. We carried out a sensitivity analysis for synthetic
and natural motions in space, to demonstrate that 3-D motion
can also be recovered reliably. 3-D motion was further
refined progressively in time by using the ordinary di-
fferential equations which describe the evolution of motion
and structure.

In a typical unstructured environment 2-D motion (in terms
of the linearization parameters) can be obtained within 10 %
of error, which in turn produces the 3-D motion parameters
within the same range of accuracy. The method behaves well
when the viewing angle (or the size of local neighborhood)
is larger than 10" , but breaks down when the viewing angle
gets smaller than 6~8 . This is due to the fact that the
variation of flow field is not visible in a sufficiently small
aperture, often masked by other adversary effects such as
digitization and the error in edge localization.
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