• Title/Summary/Keyword: Time varying delay

Search Result 312, Processing Time 0.03 seconds

Robust control of Electric Machine System Subject to Variable Load (가변 부하를 받는 전기 기계 시스템의 강인 제어)

  • Song, Jae-Bok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.697-702
    • /
    • 1997
  • Control system of electric machine systems is often required to provide the good control performance even in the presence of various variable loads. In this study, time delay control technique is adopted to overcome such variable loads. Also, in this research a new approach of avoiding saturation by varying the reference model for the time delay control based systems subject to the step changes in reference inputs. These schemes are verified by applications to the position controls of the AC servo motor system and the engine throttle actuator.

  • PDF

Robust Fuzzy Control of a Class of Nonlinear Descriptor Systems with Time-Varying Delay

  • Yan Wang;Sun, Zeng-Qi;Sun, Fu-Chun
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.76-82
    • /
    • 2004
  • A robust fuzzy controller is designed to stabilize a class of solvable nonlinear descriptor systems with time-varying delay. First, a new modeling and control method for nonlinear descriptor systems is presented with a fuzzy descriptor model. A sufficient condition for the existence of the fuzzy controller is given in terms of a series of LMIs. Then, a less conservative fuzzy controller design approach is obtained based on the fuzzy rules and weights. This method includes the interactions of the different subsystems into one matrix. The effectiveness of the presented approach and the design procedure of the fuzzy controller are illustrated by way of an example.

A Balanced Model Reduction for Fuzzy Systems with Time Varying Delay

  • Yoo, Seog-Hwan;Park, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • This paper deals with a balanced model reduction for T-S(Takagi-Sugeno) fuzzy systems with time varying state delay. We define a generalized controllability gramian and a generalized observability gramian for a stable T-S fuzzy delayed systems. We obtain a balanced state space realization using the generalized controllability and observability gramian and obtain a reduced model by truncating states from the balanced state space realization. We also present an upper bound of the approximation error. The generalized controllability gramian and observability gramian can be computed from solutions of linear matrix inequalities. We demonstrate the efficacy of the suggested method by illustrating a numerical example.

Fuzzy H2H Controller Design for Delayed Nonlinear Systems (시간지연을 갖는 비선형 시스템의 퍼지 H2H 제어기 설계)

  • Jo, Hui-Su;Lee, Gap-Rae;Park, Hong-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.578-583
    • /
    • 2002
  • This paper presents a method for designing fuzzy $H_2/H_{\infty}$ controllers of nonlinear systems with time varying delay. Takagi-Sugeno fuzzy model is employed to represent nonlinear systems with time varying delay. Using a single quadratic Lyapunov function, the globally exponential stability and $H_2/H_{\infty}$ performance problem are discussed. A sufficient condition for the existence of fuzzy $H_2/H_{\infty}$ controllers is then presented in terms of linear matrix inequalities(LMls). The proposed fuzzy $H_2/H_{\infty}$ controllers minimizes the upper bound on the linear quadratic performance measure.

IMPLEMENTATION EXPERIMENT OF VTP BASED ADAPTIVE VIDEO BIT-RATE CONTROL OVER WIRELESS AD-HOC NETWORK

  • Ujikawa, Hirotaka;Katto, Jiro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.668-672
    • /
    • 2009
  • In wireless ad-hoc network, knowing the available bandwidth of the time varying channel is imperative for live video streaming applications. This is because the available bandwidth is varying all the time and strictly limited against the large data size of video streaming. Additionally, adapting the encoding rate to the suitable bit-rate for the network, where an overlarge encoding rate induces congestion loss and playback delay, decreases the loss and delay. While some effective rate controlling methods have been proposed and simulated well like VTP (Video Transport Protocol) [1], implementing to cooperate with the encoder and tuning the parameters are still challenging works. In this paper, we show our result of the implementation experiment of VTP based encoding rate controlling method and then introduce some techniques of our parameter tuning for a video streaming application over wireless environment.

  • PDF

Networked servo motor control systems (네트워크기반 전동기 서보 제어 시스템 설계)

  • Suh, Young-Soo;Lee, Chang-Won;Lee, Hong-Hee;Jung, Eui-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.38-40
    • /
    • 2004
  • An $H_2$ servo controller is proposed for networked control systems. The network-induced delay is assumed to be time-varying and vary in the known range. The proposed controller guarantees stability and $H_2$ performance for all time-varying delay in the known range. The proposed controller is verified using a simple networked motor control system.

  • PDF

Computation Offloading with Resource Allocation Based on DDPG in MEC

  • Sungwon Moon;Yujin Lim
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.226-238
    • /
    • 2024
  • Recently, multi-access edge computing (MEC) has emerged as a promising technology to alleviate the computing burden of vehicular terminals and efficiently facilitate vehicular applications. The vehicle can improve the quality of experience of applications by offloading their tasks to MEC servers. However, channel conditions are time-varying due to channel interference among vehicles, and path loss is time-varying due to the mobility of vehicles. The task arrival of vehicles is also stochastic. Therefore, it is difficult to determine an optimal offloading with resource allocation decision in the dynamic MEC system because offloading is affected by wireless data transmission. In this paper, we study computation offloading with resource allocation in the dynamic MEC system. The objective is to minimize power consumption and maximize throughput while meeting the delay constraints of tasks. Therefore, it allocates resources for local execution and transmission power for offloading. We define the problem as a Markov decision process, and propose an offloading method using deep reinforcement learning named deep deterministic policy gradient. Simulation shows that, compared with existing methods, the proposed method outperforms in terms of throughput and satisfaction of delay constraints.

A Study on Robust Stability of Uncertain Linear Systems with Time-delay (시간지연을 갖는 불확정성 선형 시스템의 강인 안정성에 관한 연구)

  • Lee, Hee-Song;Ma, Sam-Sun;Ryu, Jeong-Woong;Kim, Jin-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.615-621
    • /
    • 1999
  • In this paper, we consider the robust stability of uncertain linear systems with time-delay in the time domain. The considered uncertainties are both the unstructured uncertainty which is only Known its norm bound and the structured uncertainty which is known its structured. Based on Lyapunov stability theorem and{{{{ { H}_{$\infty$ } }}}} theory known as Strictly Bounded Real Lemma (SBRL), we present new conditions that guarantee the robust stability of system. Also, we extend this to multiple time-varying delays systems and large-scale systems, respectively. Finally, we show the usefulness of our results by numerical examples.

  • PDF

Optimal Design of a Continuous Time Deadbeat Controller (연속시간 유한정정제어기의 최적설계)

  • 김성열;이금원
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.97-100
    • /
    • 2000
  • Deadbeat property is well established in digital control system design in time domain. But in continuous time system, deadbeat is impossible because of it's ripples between sampling points. But several researchers suggested delay elements. From some specifications such as Internal model stability, physical realizations and finite time settling, unknown polynomials with delay elements in error transfer functions can be calculated. For the application to the real system, robustness property can be added. In this paper, error transfer function is specified with 1 delay element and unkown coefficients are calculated from the specs. Especially, by varying settling time and the user-specified poles, a deadbeat controller with lower order is obtained.

  • PDF

Output Feedback Fuzzy H(sup)$\infty$ Control of Nonlinear Systems with Time-Varying Delayed State

  • Lee, Kap-Rai
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.248-254
    • /
    • 2000
  • This paper presents and output feedback fuzzy H(sup)$\infty$ control problem for a class of nonlinear systems with time-varying delayed state. The Takagi-Sugeno fuzzy model is employed to represent a nonlinear systems with time-varying delayed state. Using a single quadratic Lyapunov function, the globally exponential stability and disturance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of fuzzy H(sup)$\infty$ controllers are given in terms of matrix inequalities. Constructive algorithm for design of fuzzy H(sup)$\infty$ controller is also developed. A simulation example is given to illustrate the performance of the proposed design method.

  • PDF