• Title/Summary/Keyword: Time mixture

Search Result 2,352, Processing Time 0.036 seconds

A Study on the Multi-space Method in Fashion Illustration (현대 패션일러스트레이션의 다중공간 표현에 관한 연구)

  • Lee, Jee-Hyun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.4
    • /
    • pp.644-654
    • /
    • 2009
  • The purpose of this study is to analyze the characteristics of current fashion illustrations within the framework of Multi-space method. Multi-space means being piled up one moment & space on others, and being amassed in a scene. This method is related with Dadaism, Surrealism and Postmodernism, and also influences on the current fashion illustration. In this study, the types of Multi-space method could be classified into 4 types; Repetitive Time Mixture in Multi-space, Juxtaposed Time Mixture in Multi-space, Reiterated Space Mixture in Multi-space, Projected Space Mixture in Multi-space. The characteristics of Multi-space were analyzed and the results are as followed. The distinctive methods for Time Mixture in Multi-space are repetition and juxtaposition in a scene. Time Mixture in Multi-space can make the nonlinear narration and unreal illusory space in fashion illustrations more effectively. Reiterated Space Mixture in Multi-space can be related with the heterogeneous, surrealistic illusions in current fashion illustrations. Projected Space Mixture in Multi-space can be characterized into inter-penetration. It can derive spectators to mix the projected & transparent images in a scene for their own imaginary stories. The final imagination can be made differently according to the personal experiences of spectators.

Time-Matching Poisson Multi-Bernoulli Mixture Filter For Multi-Target Tracking In Sensor Scanning Mode

  • Xingchen Lu;Dahai Jing;Defu Jiang;Ming Liu;Yiyue Gao;Chenyong Tian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1635-1656
    • /
    • 2023
  • In Bayesian multi-target tracking, the Poisson multi-Bernoulli mixture (PMBM) filter is a state-of-the-art filter based on the methodology of random finite set which is a conjugate prior composed of Poisson point process (PPP) and multi-Bernoulli mixture (MBM). In order to improve the random finite set-based filter utilized in multi-target tracking of sensor scanning, this paper introduces the Poisson multi-Bernoulli mixture filter into time-matching Bayesian filtering framework and derive a tractable and principled method, namely: the time-matching Poisson multi-Bernoulli mixture (TM-PMBM) filter. We also provide the Gaussian mixture implementation of the TM-PMBM filter for linear-Gaussian dynamic and measurement models. Subsequently, we compare the performance of the TM-PMBM filter with other RFS filters based on time-matching method with different birth models under directional continuous scanning and out-of-order discontinuous scanning. The results of simulation demonstrate that the proposed filter not only can effectively reduce the influence of sampling time diversity, but also improve the estimated accuracy of target state along with cardinality.

Semi-Supervised Recursive Learning of Discriminative Mixture Models for Time-Series Classification

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.186-199
    • /
    • 2013
  • We pose pattern classification as a density estimation problem where we consider mixtures of generative models under partially labeled data setups. Unlike traditional approaches that estimate density everywhere in data space, we focus on the density along the decision boundary that can yield more discriminative models with superior classification performance. We extend our earlier work on the recursive estimation method for discriminative mixture models to semi-supervised learning setups where some of the data points lack class labels. Our model exploits the mixture structure in the functional gradient framework: it searches for the base mixture component model in a greedy fashion, maximizing the conditional class likelihoods for the labeled data and at the same time minimizing the uncertainty of class label prediction for unlabeled data points. The objective can be effectively imposed as individual mixture component learning on weighted data, hence our mixture learning typically becomes highly efficient for popular base generative models like Gaussians or hidden Markov models. Moreover, apart from the expectation-maximization algorithm, the proposed recursive estimation has several advantages including the lack of need for a pre-determined mixture order and robustness to the choice of initial parameters. We demonstrate the benefits of the proposed approach on a comprehensive set of evaluations consisting of diverse time-series classification problems in semi-supervised scenarios.

Electrohydrodynamic (EHD) Enhancement of Boiling Heat Transfer of R113+WT4% Ethanol

  • Oh Si-Doek;Kwak Ho-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.681-691
    • /
    • 2006
  • Nucleate boiling heat transfer for refrigerants, R113, and R113+wt4% ethanol mixture, an azeotropic mixture under electric field was investigated experimentally in a single-tube shell/ tube heat exchanger. A special electrode configuration which provides a more uniform electric field that produces more higher voltage limit against the dielectric breakdown was used in this study. Experimental study has revealed that the electrical charge relaxation time is an important parameter for the boiling heat transfer enhancement under electric field. Up to 1210% enhancement of boiling heat transfer was obtained for R113+wt4% ethanol mixture which has the electrical charge relaxation time of 0.0053 sec whereas only 280% enhancement obtained for R113 which has relaxation time of 0.97 sec. With artificially machined boiling surface, more enhancement in the heat transfer coefficient in the azeotropic mixture was obtained.

Angular Dispersion-type Nonscanning Fabry-Perot Interferometer Applied to Ethanol-water Mixture

  • Ko, Jae-Hyeon;Kojima, Seiji
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.261-266
    • /
    • 2009
  • The angular dispersion-type non-scanning Fabry-Perot was applied to an ethanol-water mixture in order to investigate its acoustic properties such as the sound velocity and the absorption coefficient. The scattered light from the mixture was analyzed by using the charge-coupled-device area detector, which made the measurement time much shorter than that obtained by using the conventional scanning tandem multi-pass Fabry-Perot interferometer. The sound velocity showed a deviation from ultrasonic sound velocities at low temperatures accompanied by the increase in the absorption coefficient, indicating acoustic dispersion due to the coupling between the acoustic waves and some relaxation process. Based on a simplified viscoelastic theory, the temperature dependence of the relaxation time was obtained. The addition of water molecules to ethanol reduced the relaxation time, consistent with dielectric measurements. The present study showed that the angular dispersion-type Fabry-Perot interferometer combined with an area detector could be a very powerful tool in the real-time monitoring of the acoustic properties of condensed matter.

A Case Study of Hot In-Place Recycling Asphalt Mixture in Korea (국내 현장가열재생아스팔트 시공 혼합물 시험평가)

  • Kwon, Sooahn;Yang, Sunglin;Lee, Jaejun;Hong, Jaecheong;Lim, Jaekyu
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.57-63
    • /
    • 2013
  • PURPOSES: This study is to investigate the Hot In-Place recycling asphalt mixture in Korea using field produced materials. METHODS: Hot In-Place reclaimed asphalt mixture was investigated to evaluate the mixture properties based on various test results such as Marshall Test, Indirect Tensile Test, TSR, and Wheel Tracking Test. These test values were compared with domestic standard specification. RESULTS: The result of the laboratory experiment indicates that the Hot In-Place Reclaimed(HIR) asphalt mixture produced at the field constrution site was satisfied all of the test criteria such as Indirect tensile test, Marshall and TSR test, and wheel tracking test. During the test, the research team found that current HIR system is required an extention of mixing time to improve quality and to reduce variation of sample to sample. Although the current HIR mixture was passed the test criteria, there is a potential capability to enhance the mixture properties as extend mixting time. CONCLUSIONS: Based on these laboratory test results, It would be concluded that domestic HIR mixture's properties were satisfied all standard specification related with evaluation of recycling asphalt mixtures. Based on this case study result, there is a chance to save construction cost and increase the usage of reclaimed asphalt concrete in the future.

Physical Properties of Reinforced Soil-Mixture Powder (보강혼합토분의 물리적 특성)

  • 이상호;차현주;김철영;장병욱
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.336-340
    • /
    • 1999
  • This study was performed to evaluate the physical properties of reinforced soil-mixture powder. Soil was used to be powder that passed by the No. 200 mech and the reinforcement as calcium carbonate, quicklime and portland cement used for this study to improve soil. We resulted from fineness , setting time, and compressive strength test of reinforced soil-mixture powder. We've got the two conclusions . The first , in case that we were used reinforced soil-mixture powder included some portland cement, the higher the mixture rates of the reinforcement , the wider the difference theoretical data with experimental data. The second, the setting time of reinforced soil-mixture powder is faster than soil powder itself and the reinforcement for promoting strength was proved that calcium carbonate was proper than others if we compared it with other reinforcment.

  • PDF

An Application of Dirichlet Mixture Model for Failure Time Density Estimation to Components of Naval Combat System (디리슈레 혼합모형을 이용한 함정 전투체계 부품의 고장시간 분포 추정)

  • Lee, Jinwhan;Kim, Jung Hun;Jung, BongJoo;Kim, Kyeongtaek
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.194-202
    • /
    • 2019
  • Reliability analysis of the components frequently starts with the data that manufacturer provides. If enough failure data are collected from the field operations, the reliability should be recomputed and updated on the basis of the field failure data. However, when the failure time record for a component contains only a few observations, all statistical methodologies are limited. In this case, where the failure records for multiple number of identical components are available, a valid alternative is combining all the data from each component into one data set with enough sample size and utilizing the useful information in the censored data. The ROK Navy has been operating multiple Patrol Killer Guided missiles (PKGs) for several years. The Korea Multi-Function Control Console (KMFCC) is one of key components in PKG combat system. The maintenance record for the KMFCC contains less than ten failure observations and a censored datum. This paper proposes a Bayesian approach with a Dirichlet mixture model to estimate failure time density for KMFCC. Trends test for each component record indicated that null hypothesis, that failure occurrence is renewal process, is not rejected. Since the KMFCCs have been functioning under different operating environment, the failure time distribution may be a composition of a number of unknown distributions, i.e. a mixture distribution, rather than a single distribution. The Dirichlet mixture model was coded as probabilistic programming in Python using PyMC3. Then Markov Chain Monte Carlo (MCMC) sampling technique employed in PyMC3 probabilistically estimated the parameters' posterior distribution through the Dirichlet mixture model. The simulation results revealed that the mixture models provide superior fits to the combined data set over single models.

Advanced LC Mixture Concept of Improved Response Time

  • Czanta, Markus;Tarumi, Kazuaki;Lee, Seung-Eun;Lee, Sang-Kyu;Jin, Min-Ok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.200-202
    • /
    • 2007
  • Improvement of LC mixtures can be realized by the development of new molecules in combination with the identification of advanced mixture concepts. By new high-polar single materials rotational viscosity has recently been improved significantly. Now, a new LC mixture concept for IPS and FFS technology has been identified which additionally improves switching time by up to 10%. This advanced concept is based on a more efficient usage of high-polar materials and Super Low Viscous (SLV) compounds and simultaneous reduction of less efficient materials.

  • PDF

Mixture Filtering Approaches to Blind Equalization Based on Estimation of Time-Varying and Multi-Path Channels

  • Lim, Jaechan
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.8-18
    • /
    • 2016
  • In this paper, we propose a number of blind equalization approaches for time-varying andmulti-path channels. The approaches employ cost reference particle filter (CRPF) as the symbol estimator, and additionally employ either least mean squares algorithm, recursive least squares algorithm, or $H{\infty}$ filter (HF) as a channel estimator such that they are jointly employed for the strategy of "Rao-Blackwellization," or equally called "mixture filtering." The novel feature of the proposed approaches is that the blind equalization is performed based on direct channel estimation with unknown noise statistics of the received signals and channel state system while the channel is not directly estimated in the conventional method, and the noise information if known in similar Kalman mixture filtering approach. Simulation results show that the proposed approaches estimate the transmitted symbols and time-varying channel very effectively, and outperform the previously proposed approach which requires the noise information in its application.