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Abstract 

 
In Bayesian multi-target tracking, the Poisson multi-Bernoulli mixture (PMBM) filter is a 
state-of-the-art filter based on the methodology of random finite set which is a conjugate prior 
composed of Poisson point process (PPP) and multi-Bernoulli mixture (MBM). In order to 
improve the random finite set-based filter utilized in multi-target tracking of sensor scanning, 
this paper introduces the Poisson multi-Bernoulli mixture filter into time-matching Bayesian 
filtering framework and derive a tractable and principled method, namely: the time-matching 
Poisson multi-Bernoulli mixture (TM-PMBM) filter. We also provide the Gaussian mixture 
implementation of the TM-PMBM filter for linear-Gaussian dynamic and measurement 
models. Subsequently, we compare the performance of the TM-PMBM filter with other RFS 
filters based on time-matching method with different birth models under directional 
continuous scanning and out-of-order discontinuous scanning. The results of simulation 
demonstrate that the proposed filter not only can effectively reduce the influence of sampling 
time diversity, but also improve the estimated accuracy of target state along with cardinality. 
 
 
Keywords: multi-target tracking, sensor scanning, sampling time diversity, random finite set, 
Poisson multi-Bernoulli mixture. 
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1. Introduction 

Multi-target tracking (MTT) is a hot issue in sensor data fusion, which has a wide range of 
application domain, such as sensor network, ocean monitoring and vehicle tracking [1-3]. It is 
complicated to address the MTT problem because of its difficulty of correlating the target with 
the measurement due to factors such as false alarms and clutter in the measurement space, the 
dilemma to determine the new target appearance along with the old target disappearance and 
the limited field-of-view caused by the multi-sensor. 

The global nearest neighbor (GNN) [4], the joint probabilistic data association (JPDA) [5] 
and the multiple hypothesis tracking (MHT) [6-7] are the earliest techniques proposed to 
complete MTT in the last century. Basically, these data association approaches are utilized to 
find the association between measurement and target state estimate, then single target filter is 
used to predict and update the target state estimate. However, these approaches cannot be 
implemented on account of their computational limitations in the strong clutter jamming 
circumstance [8]. In order to improve the real-time performance of the algorithm, the methods 
based on random finite set (RFS) is utilized to the MTT problem [9]. The multi-target state 
and measurement are modeled as the unified RFS and the posterior multi-target density is 
propagated forward to achieve the Bayesian recursive filtering of multi-target. The birth and 
death of the target are also modeled as Poisson process. 

The MTT theory based on RFS has been continuously improved in the past twenty years. 
According to whether the predicted distribution and posterior distribution have the same form 
as the initial prior, the filter on RFS can be divided into the conjugate RFS filter and the non-
conjugate RFS filter [10-11]. The probability hypothesis density (PHD) filter [12-13], the 
cardinalized probability hypothesis density (CPHD) filter [14], the multiple target multi-
Bernoulli (MeMBer) filter [15] belong to non-conjugate RFS filter, i.e., to approximate the 
posterior multi-target density at low cost. The conjugate RFS filter possesses higher filtering 
accuracy and easier computation than the non-conjugate one due to the conjugacy property 
[16] and it can be divided into two types. The first conjugate prior is the Poisson multi-
Bernoulli mixture (PMBM) filter which consists of the union of Poisson point process and 
multi-Bernoulli mixture (MBM) [16]. The addition of Poisson part can manage the number of 
underlying targets effectively which means that all targets that have never been detected are 
guaranteed. Track-oriented multiple hypothesis tracking (TOMHT) [6] can be used to 
complete the MBM part based on all data association hypotheses. As we can see, The PMBM 
filter is fascinating not only because of its conjugacy, but also nicely captures the relevant 
uncertainties [17]. The second conjugate prior is adding the label to the target state like delta-
generalized labeled multi-Bernoulli (δ-GLMB) filter [18-19] which has been proved to be a 
special case of the PMBM filter [16]. Although it is capable of presenting the trajectory of 
target, it has a fault of long computation time. 

We hope to combine theory and practice in the sensor field with the RFS-based MTT 
method. In the classical RFS methodology [9], the measurement is assumed to have the same 
sampling time because the multi-target state and measurement are modeled as a unified whole. 
Whereas, in the application scenarios (e.g., infrared sensor, the phased array, millimeter wave 
radar), it takes time to scan the whole surveillance area, for the reason that the beam width is 
limited and the sampling time of targets at the different positions can not be the same [20]. If 
we introduce method of RFS to the scanning of sensor application directly, the diversity of 
sampling time will lead to the mismatch between prediction step and update step in RFS theory, 
which seriously affects the performance of target tracking. Directing at the problem of time 
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diversity of sensor target sampling, a time-labeled RFS is proposed, where a time-matching 
Bayesian filtering framework is constructed and the analytical implementations based on 
Gaussian mixture of PHD and GLMB are provided in refs. [21-22]. The scanning reveals the 
underlying nature of the RFS and thus inspires the application of time-matching. 

In order to complete the time-matching framework further, we combine it with the first 
conjugate RFS filter, namely Poisson multi-Bernoulli mixture filter in the sensor scanning 
mode in this paper. We treat different kinds of targets discriminatively with combinatorial 
filtering performed in a parallel manner. The prediction and update formula of time-matching 
Poisson multi-Bernoulli mixture (TM-PMBM) filter is given and the implementation of TM-
PMBM filter in Gaussian mixture model is provided. Finally, we verify the effectiveness of 
the proposed filter under various birth conditions and different scanning modes. Compared 
with other time-matching RFS filters, the TM-PMBM filter can address the mismatch problem 
between measurements and predicted states moreover the filtering accuracy is much higher. 

The rest of this paper is organised as follows. Section 2 introduces the background of RFS 
and PMBM conjugate prior, the problems existing in sensor scanning is mentioned in detail.  
In Section 3, we provide the formula derivation and theoretical basis of TM-PMBM filter to 
figure out the problem of dealing with various sampling time. In Section 4, the implementation 
of TM-PMBM filter under linear and Gaussian model is given in detail. In Section 5, we 
simulate the tracking performance of TM-PMBM filter on different scenarios and compare it 
with other RFS filters on the same conditions. In Section 6, we draw conclusions. 

2. Background 
In this section, we briefly introduce the knowledge of random finite set and Poisson multi-
Bernoulli mixture model. In Section 2.1, the principle of random finite set is mainly described 
and the problems of using random finite set theory in sensor applications are explained in 
Section 2.2. Section 2.3 gives the related concepts of PMBM conjugate prior. 

2.1 Random finite set and Bayesian filtering 
Suppose a multi-target tracking scenario on the mathematical real space   containing rational 
and irrational numbers. Let ,x kN  be the number of the targets and ,z kN be the number of 

measurements in the kth scan. There are target states ,1 , , x kN
k kx x⋅ ⋅ ⋅ ∈  and measurements 

,1 , , z kN
k kz z⋅ ⋅ ⋅ ∈  where xN⊂  and zN⊂ 

denote state space and measurement space 
respectively. These targets and measurements are random variables with no specific order and 
the number is also stochastic. Therefore, the target set kX  and measurement set kZ can be 
regarded as the following random finite set (RFS) [9]:  

 { },1 , , ( ),x kN
k k kX x x F= ⋅⋅⋅ ∈   (1) 

 { },1 , , ( )z kN
k k kZ z z F= ⋅⋅⋅ ∈   (2) 

where ( )F  and ( )F  are the respective collections of all finite subsets of kX and kZ .Single 
point target state is composed by the target position, velocity, steering angle and other 
properties which describe the nature of the target motion completely. 

The Bayesian filtering structure is applied to the scenario of random finite set to realize the 
tracking of multiple targets. Suppose that the dynamic state of multi-target at the end of the k-
1th scan is Xk-1, the dynamic state of multi-target at the end of the kth scan is Xk, and the state 
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transition density of multiple targets at the next scan can be considered as Markov transition 
density | 1 ( )k kf − ⋅ . Besides, the likelihood function ( )kg ⋅ is used to describe the probability that 
the measurement set Zk of the kth scan is generated by the multi-target Xk. Then according to 
the above conditions, the Chapman-Kolmogorov equation can be used to calculate the multi-
target prediction [9]: 

 | 1 1: 1 1 1: 11( ) ( ) ( )k k k k k k kk kX Z f X X X Z Xπ π δ− − − −−= ∫  (3) 
According to the Bayes criterion, the multi-target posterior calculation is as follows: 

 1: 11
1:

1: 1

( ) ( )
( ) ,

( ) ( )
k k k k kk k

k k k

k k k k k k

g Z X X Z
X Z

g Z X X Z X

π
π

π δ
−−

−

=
∫

 (4) 

where the normalization constant is obtained by the form of set integration: 

 { }( ) ( )1 1
1

1( ) , , , ,
! i i

i

f X X f x x d x x
i

δ
∞

=

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∑∫ ∫  (5) 

2.2 Time problem in filtering 
Filtering framework is under ideal conditions in Section 2.1, nevertheless, the filter of the 
scenario do not follow the standard bayesian rule at the same sampling time in the real sensor 
application. The sensor obtains the data (e.g., location, velocity) temporarily, only when the 
beam scans to the targets. Take Fig. 1 as an example, the target 1 and 2 are represented as a 
triangle and a circle, respectively. Assume the beam is at the far right of the fan-shaped 
surveillance area when the scan starts. The measurements of the target 1 and 2 have been 
detected sequentially in process of the clockwise scanning sweeping to the left, therefore their 
sampling time are different. In other words, the measurements not on the same line as the 
sensor are bound to have different sampling times.   

Conventional target tracking takes the end time of the scan as the same moment of 
prediction and update, i.e., the situation that goes through the whole scanning period to filter 
in (3)-(4), by the same token, the target also needs the measurement at the end of the scan to 
update the state estimate. However, the sampling time of the measurement is often inconsistent 
with the end of the scanning period due to the view within the scope, this will bring error to 
the update, resulting in the state estimate out of accuracy. As shown in Fig. 1, the real target 
states at end of the kth scanning period are provided, while targets generate the measurements 
within the kth scanning period only if the targets are scanned by the beam. Obviously, it is not 
correct to use the measurements and to update the target state throughout the whole scanning 
period. With the addition of scanning times, the change of sampling time in different periods 
will reduce the stability of state estimate and the error will increase by accumulation. 

 
Fig. 1. A two-dimensional scenario is scanned from left to right at the kth period. There are two 

targets in the surveillance area which move in a straight line starting with states 1
kx and 2

kx , ending 

with states 1

kx ′ and 2
kx ′ . Also measurements 1

kz  and 2
kz are generated within the period. 
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For addressing the problem of filtering above, it is necessary to consider the time 

information of the target to match the measured sampling time with the predicted state 
transition time. We hope to complete the recursive filtering of the time-matching for the 
standard point target with Poisson multi-Bernoulli mixture conjugate prior. 

2.3 PMBM conjugate prior 
PMBM conjugate prior contains two types of RFS to represent two kinds of targets [16]. On 
the one hand the Poisson point process (PPP) RFS is used to describe the target which has 
never been detected while still do exist at present, on the other hand the multi-Bernoulli 
mixture (MBM) RFS is established to model the potential detected target, either is previously 
detected, or it could be the new one currently. Two types of RFS describe the process of multi-
target tracking dynamics as comprehensively as possible. Therefore, we can use concrete 
symbols to describe this classification method: 
 ( ) ( ) ( )

u d

pmbm ppp u mbm d

X X X

f X f X f X
=

= ∑


 (6) 

where X indicates the target set, uX  and dX  indicate the undetected target set and potential 
detected target set, respectively. Based on the properties of two kinds of RFS, the target set 
density can be expressed as: 

 ( )( ) ( )( ) exp ,
u u

ppp u u u u

x X

f X x dx xµ µ
∈

= − ∏∫  (7) 

 ( )
| |

1

| |
, ,

1

( ) ,
dX

d

d
ii

X
mbm d i j i j

i
j J iX X

f X w f X
=

∈ ==

∝∑ ∑ ∏


 (8) 

where ( )pppf ⋅  denotes the Poisson density, ( )µ ⋅ >0 denotes the Poisson rate, ( )mbmf ⋅  denotes 
the MBM density, which can be represented by a series of normalized MB probability densities 
under the index j of MBM components. Set a total of potential detected targets, i is the index 
of the target, therefore ,i jw  and ( ),i j

if X  repesent the weight of the target and the Bernoulli 

density. ⋅ denotes the number of variables. 
Each global association history hypothesis follows a multi-Bernoulli distribution. A single 

global hypothesis is composed of multiple hypotheses of single potential detected target, 
which represents the possible association between potential detected target and measurement. 
It's worth noting that the relationship between the weight of Bernoulli components and the 
weight of MB jW  can be expressed as follows: 

 
| |

,

1

dX
j i j

i

W w
=

∝∏  (9) 

The density of the ith Bernoulli component can be expressed as follows: 

 { }, ,

1-      
( ) ( )

0               

i, j
i

i j i j d d
i i

r X
f X r p x X x

otherwise

 =∅
= =



 (10) 

The potential detected targets need to reflect two aspects of uncertainty. On the one hand, 
the uncertainty of target existence is represented by the probability of target existence i, jr  and 
on the other hand, the uncertainty of target state is represented by the density of the existing 
state , ( )i jp ⋅ . This is the reason that the Bernoulli model is the most appropriate description for 
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the distribution of targets. In summary, PMBM propagates through the hybrid of PPP and 
MBM, calculating new PMBM density parameters through prediction and update of the 
Bayesian filtering framework, which can be referred in ref. [16]. 

3. Time-matching PMBM filter 
In this section, we show how to realize the filtering iteration of PMBM in the sensor scanning. 
We describe time-matching PMBM conjugate prior in Section 3.1. The prediction and update 
process of the improved PMBM filter are provided in Section 3.2 and Section 3.3, respectively. 
Section 3.4 discusses the formation of sensor tracking under MBM filter.  

3.1 Time-matching PMBM conjugate prior 
In Section 2.2, we mentioned the problem that the filtering accuracy decreases due to the time 
mismatch between the prediction step and update step. Here, we divide the multi-target prior 
according to the sampling time, for the original unified transform entirety to components that 
can be calculated independently. This separating method can be understood as transforming 
the single filtering into the parallel filtering during the scanning period, where it can reduce 
the mutual interference between each component in the single filtering. 

We want to realize time-matching in the framework of standard RFS Bayesian filters [22]. 
Before we start filtering, we make the following assumptions:   

Assumption 1: Each target evolves independently and the target-derived measurements are 
independent of each other. Each target may give rise to at most one measurement theoretically 
in a single scanning period;  

Assumption 2: For the process of scanning the whole surveillance area at single time, one 
region is scanned and only scanned once in the single sampling period; 

Assumption 3: For the process of scanning one direction in the single sampling period, the 
measurement generated by the target will be scanned (detected) at most once. 

Based on the above assumptions, we consider the sampling time into target tracking which 
means the factor of time adds to the target state, the improved target state set kX and 

measurement set kZ are as follow: 

 ( ) ( ) ( ){ }1 1, , , , , , ( ( ) ),k kN N UD
k k k k k k kX X t X t X t F F= ⋅⋅ ⋅ ∈ ×    (11) 

 ( ) ( ){ }1 1, , , , ( ( ) ),k kN N
k k k k kZ Z t Z t F F= ⋅⋅ ⋅ ∈ ×

   (12) 

where i
kt  represents the distributed sampling time in a single scanning period, i

kX  and i
kZ  

respectively are the target state estimate and measurement sets under time i
kt , ( )1kNUD

k kX X +  

denotes missed detected target state, tk represents the end of the time in the kth scan,  ,  and 
 represent the target state space, measurement space and sampling time space.  

We can regard the target state set with sampling time as an augmented target state set, 
which is similar to the label set [18]. Assumption 1 guarantees the independence between the 
divided components, given the posterior PMBM density ( )1 1: 1

pmbm
k k kf X Z− −

   , posterior Poisson 

intensity 1
ppp

kf −  and posterior MBM density 1
mbm

kf − at the end of the k-1th scan, we can obtain 
predicted PMBM density at the kth scan by substituting (6) into expression [22, (10)]: 
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 ( )
( ) ( )

( ) ( )
| 1

, ,
| 1 1 1: 1

1
1: 1

, ,
| 1 1 1: 1

1

( , ) ( , ) , ( , )

( , ) ( , ) , ( , )

u
k

dk k ku d
kk k

N
i u i u ppp

k k k k k k
pmbm i

k k N
X X X j d j d mbm

k k k k k k
j

f X t X t f X t Z
f X Z

f X t X t f X t Z
−

− − −
=

−
=

− − −
=

 
 
 =
 
 
 

∏
∑

∏
 



 (13) 

where | 1 ( )k kf − ⋅ ⋅  is the state transition kernel. Besides, ,⋅ ⋅ denotes an inner product operation. 
In addition, we can rewrite (4) to obtain the update distribution changing from the division of 
sampling time to the division depending on measurements: 

 
( ) ( ) ( )

{ }
{ }

1:1
1

1: 11

1 1: 11

= ( , ) ( , ) { }

( ( , )) (( , ) )
= ,

( ( , )), (( , ) )

k

k

Z
pmbm pmbm UD pmbm i i i

k k k k k k kk k k k k k
i

i i i pmbm i iZ
k k k k k k kk k

i i i pmbm i i
i k k k k k k kk k

f X Z f X t f X t z

g z X t f X t Z

g z X t f X t Z

−
=

−−

=
−−

∅ ×∏

∏

 

 (14) 

where ∅ represents the empty set, i.e., the missed part and ( )kg ⋅ ⋅  is the measurement density 

function whose sampling time is i
kt . The proof of (14) is arranged from expressions [22, (13)-

(16)] analogously. As we can see that the missed part is independent of other measurement 
associated part due to the lack of sampling time, therefore we should handle this kind of targets 
alone. After the above iteration period, it is critical that the parallel filtering makes the target 
achieve time-matching in the process of dynamic and measuring correction. 

Different from the augmented space (e.g., [23]), the time factor is quantified by the 
measurement or scanning period edge, which does not need to be obtained by recursive 
estimation. Using the basic variable from (11)-(14), we can derive the innovative time-
matching PMBM filter in the augmented space. The time-matching PMBM filter contains 
prediction process and update process, which are transmitted in the form of PMBM and given 
in Section 3.2 and Section 3.3, respectively. 

3.2 Prediction Process 
As we can see (13) that Poisson and Bernoulli part can be predicted separately. Given the 
posterior PMBM density at k-1th scanning period parameterized by Poisson intensity 1( )kµ − ⋅ , 

MBM density ( ){ }, , ,
1 1 1, ,i j i j i j

k k kw r p− − − ⋅ , where ,
1

i j
kw − ，

,
1

i j
kr − ， ( ),

1
i j
kp − ⋅ are the weight, existence probability 

and Bernoulli density of ith target in jth global hypothesis, respectively. { }1
1 1 1, , ,N UD

k k kt t t t− − −
′ = 

  
is the sampling time set of k-1th scanning period. Poisson part of the prediction can be 
expressed using TM-PHD filter prediction equation from ref. [22]: 
 ( ) ( ) ( ) ( ) ( )( ) ( )| 1 , | 1 1, , , , , , ,b

k k k s k k k k
t

x t x t p x t f x t x t x tµ λ µ− − −
′

′ ′ ′= +∑  (15) 

where b
kλ  is the newborn intensity of the kth scan, sp  and | 1k kf − denote the probability of 

survival and state transition function, respectively. 
Bernoulli part of the prediction according to expressions [11,(39)-(41)] can be attached to 

the sampling time expressed as follows: 
 , ,

| 1 1 ,
i j i j
k k kw w− −=  (16) 

 ( ) ( ), , ,
| 1 1 1, , , ,i j i j i j

k k k s k
t

r r p x t p x t− − −
′

′ ′= ∑  (17) 
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 ( )
( ) ( ) ( )( ) ( )

( ) ( )

,
, | 1 1,

| 1 ,
, 1

, , , ,
,

, ,

i j
s k k k ki j

k k i j
t s k k

p x t f x t x t p x t
p x t

p x t p x t
− −

−
′ −

′ ′ ′
=

′ ′∑
，

，
 (18) 

The parameters of the predicted PMBM density are augmented to: ( )| 1 ,k k x tµ − , 

( ){ }, , ,
1 1 1, , ,i j i j i j

k k k k k kw r p x t− − −
. This part is mainly based on the sampling to realize the allocation of 

time and state in the prediction part. 

3.2 Update Process 
Given a predicted PMBM prior with parameter ( )| 1 ,k k x tµ − , ( ){ }, , ,

1 1 1, , ,i j i j i j
k k k k k kw r p x t− − − , we can 

obtain the posterior PMBM density at the kth scan on the basis of ref. [11, Section Ⅲ. A] 
attached to the sampling time. Corresponding to the predicted part, , ( )D kp ⋅ , ( )kg ⋅ ⋅  and ( )kc z
denote the probability of detection, the measurement density function and the clutter intensity. 

A) Undetected targets follow updated Poisson intensity: 
 ( ) ( )( ) ( ), 1, 1 , ,k D k kx t p x t x tµ µ −= −  (19) 

B) The Poisson components generates the potential first detected targets, i.e., a new 
Bernoulli component is created for each measurement: 

 ( ) ( ) ( ) ,
k k

p p
kr z e z zρ=  (20) 

 ( ) ( ) ( ) ( )
( )

, | 1, , ,
, ,D k k k kp

k
k

p x t g z x t x t
p x t z

e z
µ −=  (21) 

where 
 ( ) ( ) ( ) ,p

k k kz e z c zρ = +  (22)

 ( ) ( ) ( ) ( ), | 1, , , ,k D k k k k ke z p x t g z x t x tµ −=   (23) 
C) Previous detected targets are subject to Bernoulli update, which is divided into two 

aspects: missed detection and measurement association. 
For missed detected targets: 

 , ,0 , , ,0
| 1 ,i j i j i j

k k k kw w ρ−=  (24) 

 , ,0 , , ,0
| 1 ,i j i j i j

k k k kr r ξ ρ−=  (25) 

 
,

, | 1, ,0
, ,0

(1 ( , )) ( , )
( , ) ,

i j
D k k ki j

k i j
k

p x t p x t
p x t

ρ
−−

=  (26) 

where 
 , ,0 , ,

| 1 | 11 ,i j i j i j
k k k k kr rρ ξ− −= − +  (27) 

 ( )( ) ( ),
, | 11 , , ,i j

D k k kp x t p x tξ −= −  (28) 
On the other hand, for the detected targets: 

 , ( ) 1,i j
kr z =  (29) 

 
, , ,

| 1 | 1 , ( , ), ( | , ) ,i j i j i j
k k k k k D k kw w r p x t g z x t− −=  (30) 

 
,

, | 1,

,
, | 1

( , ) ( | , ) ( , )
( , | )

( , ) ( | , ), ( , )

i j
D k k k ki j

k i j
D k k k k

p x t g z x t p x t
p x t z

p x t g z x t p x t
−

−

=  (31) 
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After the update process, the measurement has been associated with one Bernoulli 
component at most in each global hypothesis and a large number of local hypotheses will be 
generated. The time element also becomes a part of the single target hypothesis. Consequently, 
the direct time correspondence relationship established by the association hypothesis can be 
used to deduce the complete time-matching method of PMBM filter. New global hypotheses 
are generated by traversing all possible combinations of the single target hypothesis by Murty 
algorithm [6]. The final state extraction is extracted from the global hypothesis with the highest 
weight, which needs pruning and selection. The specific operations of hypothesis weight are 
explained in Section 4.3. 

3.4 Discussion 
As can be seen from the above operations, the update process and the prediction process 

are measured with the same time, which further eliminates the problem that the sampling time 
is often inconsistent with the end time of the scanning period. Different types of target can 
also be divided independently on their sampling time to reduce the mutual influence. The first 
step is making a time prediction for each measurement, which overcomes the time problem, 
however it also brings an increase in computation. In order to solve this problem, we choose 
to add gating technology [24] to eliminate clutter, reducing the time of the prediction step. 
Since there is a one-to-one correspondence between the sampling time and the measurement, 
the update step of time-matching PMBM filter is equivalent to that of PMBM filter. In 
summary, the time-matching PMBM filter performs in parallel form and the schematic 
diagram of the TM-PMBM filter is shown in Fig. 2: 

 
Fig. 2. Simple schematic diagram of the TM-PMBM filter 

 
matching method. MBM filter turns Poisson birth model to Bernoulli or mixture Bernoulli 

birth model [25]. Prediction and update steps of the intensity of Poisson part set to be 0, for 
example the update exists without having to assign each measurement to a new potential target, 
because Bernoulli component is the clutter in the sense of probability. Therefore, we can 
transform the time component on the vanishing Poisson part into the new Bernoulli component, 
and the computation on the update part can be further reduced, and the matching of prediction 
step and update step can be achieved just like TM-PMBM. Compared with MBM birth model, 
Poisson birth model can cover the position of potential targets to a greater extent and is not 
limited by the maximum number of targets, therefore TM-PMBM also has a larger scope of 
application than TM-MBM. 
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4. Gaussian Mixture Implementation of time-matching PMBM filter 

In this section, under the linear and Gaussian model, we give the implementation of the 
TM-PMBM filter in detail. In Section 4.1 and Section 4.2, we specifically clarify the process 
of the detected targets in addition to the undetected and missed targets. The final Section 4.3 
describes the two-stage process of pruning global assumptions used by TM-PMBM filter to 
improve computational efficiency and target state extraction is also discussed. 

Assumption 4: The given target follows a Gaussian linear motion model and the 
measurement model is also a Gaussian linear model: 
 ( ) ( ), , ; ( ) , ( ) ,f x t x t N x F t t x Q t t′ ′ ′ ′ ′=  (32) 

 ( ) ( )( ), , ; , ,h z t x t N z H t x R=  (33) 
where ( ; , )N x m P means the Gaussian density x with mean m and covariance P. x xn nF ×∈

represents the state transition function of the single-time target, z xn nH ×∈  represents the 
measurement transition function of the single-time target, x xn nQ ×∈  represents the state 
transition function of the single-time target, and z zn nR ×∈ represents the state transition 
function of the single-time target.   

Assumption 5: The survival probability and detection probability in filter are independent 
of the expansion state of the target and are set as constant: 
 , , , ,( , ) , ( , )S k S k D k D kp x t p p x t p′ ′ = =  (34) 

The posterior Poisson intensity and the posterior Bernoulli component density at the end 
of k-1th scanning period are set as: 

 ( ) ( )
1

1 1 1 1
1

, ( ) ; ( ), ( ) ,
p
k

J

q q q
k k k k

q

x t w t N x m t P tµ
−

− − − −
=

′ ′ ′ ′=∑  (35) 

 
1

, , , , , , ,
1 1 1 1

1

( , ) ( ) ( ; ( ), ( )),
B
kJ

i j i j q i j q i j q
k k k k

q

p x t w t N x m t P t
−

− − − −
=

′ ′ ′ ′=∑  (36) 

where qw and pJ denotes the weight and the number of Poisson components, , ,i j qw , , ,i j qr ,
BJ denotes the weight, existing probability and the number of Bernoulli components, 

respectively. Detected targets and undetected targets are distinguished by the superscript d and 
u. 

In this section, we do not express the steps like traditional Bayesian prediction and update 
as Section 3, however do divide them according to sampling time like (13)-(14), which is more 
conducive for us to express the Gaussian mixture implementation of the improved filter clearly. 

4.1 Detected potential targets Filtering 
Prediction Step: Based on Assumption 1-5, there is a Gaussian mixture form of predicted 

Poisson density: 

 ( ) ( )
1

, , ,
| 1 | 1 | 1 | 1

1

, ( , ) ( | ) ; ( | ), ( | ) ,
p
k

J

d b d q d q d q
k k m k m k k m k k m k k m

t q

x t x t w t t N x m t t P t tµ λ
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− − − −
′ =

′ ′ ′= +∑∑  (37) 

 ( )
1

( , ) ; ( ), ( ) ,
bJ

b q q q
k m m m

q

x t w N x m t P tγ γ γλ
=

=∑  (38) 

where 
 ,

| 1 , 1( | ) ( )d q q
k k m S k kw t t p w t− −

′ ′=  (39) 
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 ,
| 1 1( | ) ( | ) ( )d q q

k k m k m km t t F t t m t− −
′ ′ ′=  (40) 

 , ,
| 1 1( | ) ( | ) ( ) ( | ) ( | )d q d q T

k k m k m k k m k mP t t F t t P t F t t Q t t− −
′ ′ ′ ′ ′= +  (41) 

where ( , )b
k x tλ , 

bJ  and , 1
q

kwγ −  denote newborn Poisson intensity, the number and the weight of 
newborn components, respectively. 

Gaussian mixture form of predicted density with Bernoulli component: 

 
,

1
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where 
 , , , , ,

| 1 , 1( | ) ( )d i j q i j q
k k m S k kw t t p w t− −

′ ′=  (44) 

 , , , , ,
| 1 1( | ) ( | ) ( )d i j q i j q

k k m k m km t t F t t m t− −
′ ′ ′=  (45) 

 , , , , ,
| 1 1( | ) ( | ) ( ) ( | ) ( | )d i j q i j q T

k k m k m k k m k mP t t F t t P t F t t Q t t− −
′ ′ ′ ′ ′= +  (46) 

It is important to note that, for both Poisson and Bernoulli components, the predicted time 
component here is assigned according to the single measurement time mt . We add gating 
constraint to the prediction part of Bernoulli to reduce the number of calculated measurements, 
which greatly reduced the computational burden of the prediction step [24]. However, these 
measurements are not deleted, but they are not involved in the calculation of the prediction 
step. When forming a new global hypothesis, these measurements still need to be associated 
with the potential targets. 

Update Step: The detected potential targets consist of two parts: the new Bernoulli 
components generated by measurements that may create new tracks and previous Bernoulli 
components associated with measurements. 

Based on Assumption 1-5, the existence probability and the density of Bernoulli 
components for the first time given by (20)-(23) can be characterised by: 
 ( ) ( ) ( ) ,

k k

p p
kr z e z zρ=  (47) 
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After the Bayesian update for the potential new tracks, the relevent measurements ought to 

be considered to connect with the previous tracks. Of course, the existence probability of 
hypothesis component should be 1, the weight and the density of Bernoulli components for 
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the associated hypotheses given by (29)-(31) can be characterised by: 
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Similar to the Bernoulli component of the first detection, the previous detected potential 
targets also go through the whole Kalman update process.  

4.2 Undetected and missed targets Filtering 
Unlike in the case of Section 4.1, we uniformly identify the moment at the end of the kth scan 
period as this filtering moment te for both Poisson and Bernoulli components which spends the 
whole scanning time to filter, because it fail to find the appropriate time to match them. 

Prediction Step: Gaussian mixture form of predicted Poisson density can be derived as 
follows: 
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Gaussian mixture form of predicted Bernoulli density can be derived as follows: 
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The parameters of Gaussian components have the same form of calculation just as (39)-
(41) and (44)-(46). It is important that the time allocation of these targets is the end of the scan 
rather than the sampling time of each measurement. 

Update Step: Posterior Bernoulli density with undetected targets can be stated: 
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where 

 ( ) ( ), ,
, | 11 ( | ),u q u q

k e D k k k ew t p w t t−
′= −  (58) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 6, June 2023                                   1647 
 

 ( ) ( ), ,
| 1 | ,u q u q

k e k k em t m t t−
′=  (59) 

 ( ) ( ), ,
| 1 | ,u q u q
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where the parameters of Gaussian mixture are inherited by the predicted Poisson part so does 
the number | 1k k kJ J −= . 

Posterior Bernoulli component density for misdetection potential targets is given by (24)-
(26) which can be simplified as: 
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where 
 ( ) ( ), , , , , ,

| 1 | ,u i j q u i j q
k e k k em t m t t−

′=  (64) 

 ( ) ( ), , , , , ,
| 1 |u i j q u i j q

k e k k eP t P t t−
′=  (65) 

4.3 Pruning and State extraction 
Having gone through Section 4.1 and Section 4.2, we have completed the association of the 
target with all the measurements, forming the available target hypothesis, and make the update 
in accordance with the time-matching model.  In order to obtain the global hypothesis required 
in the kth scan period, we associate the global hypothesis j of the previous scan period through 
all the current data, which leads to the problem of excessive number of hypotheses. In this 
case, we need to determine the number of global hypotheses. 

The formation and deletion of global hypotheses are mainly selected by Murty algorithm 
to select new global hypotheses with the highest weight. The cost matrix Cj is generated 
according to the associated weight of the generated potential detected targets and the 
measurements Z: 
 ln[ ,   ],j O NC W W= −  (66) 
where 
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where OW represents the weight matrix of Ow  after removing clutter generated by updating the 

n old tracks in the m measurements, Then NW  is a diagonal matrix of pure measurement weights. 
It is clear that new k global hypotheses can be selected by minimizing tr(SC) using Murty 
algorithm to generate assignment matrix S of 0 or 1 entries from the diagonal matrix generated 
by measurements. 
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After that, it is still necessary to delete useless global hypotheses and Bernoulli components 

to save computing resources, which can be divided into four main aspects. The first is to retain 
the global assumption that the weight is higher than the threshold. Second, each potential track 
is correlated with all measurements. Obviously, a target can only generate one measurement 
at most and the unnecessary association hypothesis must be deleted. Third, the Bernoulli 
component with a lower sum of the existence probability of all associations will also increase 
the computational burden and these will reasonably be removed. Fourth, the global hypotheses 
of possible duplications generated by the deletion operation are merged into one by adding 
their weights and removing the duplications. 

The last step of the time-matching PMBM filter is the extraction of target states. Ref. [16] 
puts forward three estimators. Estimator 1 is the estimation of the excess threshold extracted 
from the selected global hypothesis with the highest weight, Estimator 2 uses the maximum 
posterior estimation of the cardinality with the highest weight in GLMB.  Estimator 3 uses the 
maximum posteriori estimation of the deterministic cardinality with the highest weight. 

5. Simulation and Results 

5.1 Basic simulation Settings 
To prove the tracking performance of time-matching PMBM filter, we design simulation with 
two-dimensional challenging scenarios in this section. Suppose that there are 6 targets appear 
in the surveillance area and each target obeys the linear Gaussian dynamic and measurement 
model in accordance with (32), (33), the scenarios examined are exceptionally challenging due 
to constant acceleration (CA) model which is expressed as follows: 
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 (69) 

where I2 ，t t′−  and 1τ =  represent 2×2 identity matrix ，sampling time interval and maneuver 
correlation time, besides the standard deviation of the process and measurement noise wσ , vσ  
are 5 and 10. The state of the target in the augmented space can be written as 

, , , , ,x x x y y yp v a p v a   , where px and py are the x and y axises of the target, vx, vy and ax, ay are the 
fractional velocities and acceleration in the x and y direction. In addition, the first and second 
dimensions of measurement obtained are the x and y axises of the measurement. Next are some 
settings for the scenario parameters. The sensor is located at (0, 0) in terms of coordinates. The 
size of scenario is set to [0, 2000] in range as well as [0°, 180°] in angle and the clutter 
generated in each scan obeys the uniform distribution and its number obeys the Poisson 
distribution with the parameter λ = 10. The probability of survival and detection are 0.99 and 
0.85 respectively. 

The initial state, birth time and death time of targets in the specific state space are shown 
in Table 1 and the true states of targets are reflected in Fig. 3. Specially, the PMBM filter 
implementation uses ellipsoidal gate, a maximum number of global hypotheses Nh =10 and 
Estimator 3. We use a pruning threshold of 10-5 for the Poisson part and eliminate Bernoulli 
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components with existence probability whose is lower than 10-5.  
 

Table 1. The Information of True Targets 
Targets Initial Targets States Birth Time Death Time 

1 [1000;-13;0.01;100;2;0.35] 1 75 
2 [-1500;20;0.15;1000;-5;0.16] 1 100 
3 [-1200;23;0;100;16;0] 20 100 
4 [-1200;13;0.2;100;6;-0.1] 20 100 
5 [-1200;15;-0.3;100;10;0.25] 40 100 
6 [1000;-8;0.15;100;8;0.35] 40 100 

 

 
Fig. 3. The real point tracks of the targets. Various targets are marked by discernible colors. 

 
The key to the time-matching method is to capture the sampling time of the measurements 

accurately. In practical sensor applications, it is to divide the surveillance area into several fan-
shaped sectors of equal interval. If the target falls into the sector, the sampling time of the 
target can be identified as the time in the middle of the sector whose prerequisite is that the 
surveillance area must be demarcated sufficiently. Consequently, we divide the monitoring 
area into 1000 equal parts based on the situation that the sensor is considered as the origin. 

The generalized optimal subpattern assignment (GOSPA) metric is used to evaluate the 
performance of augmented trajectory estimation [26]. Let *, ,X Y γ denote the ground truth set, 
its estimate and the optimal assignment. The GOSPA error ( )( , )c

pd α ⋅  is decomposed as: 
 ( ) ( ) ( ) ( )

1
( , ) * * *, , , ,pc p p p
p l f md X Y c X Y c cα γ γ γ = + +   (70) 

where,  ( )p
lc ⋅  denotes localization cost, ( )p

fc ⋅  denotes false target cost and ( )p
lc ⋅  denotes 

missed target cost, whose parameters are set as p = 2, c = 100, α = 2. Besides, the root mean 
square error (RMS) of Monte Carlo runs is obtained to analyze the filter. We choose PHD 
filter [12], MBM filter [25], PMBM filter [16] and GLMB filter [10] as prototypes to verify 
the effectiveness and robustness of our fashion. GLMB filter is similar to MBM01 filter 
structurally, which can be implemented by joining prediction and update formulation, namely 
joint-GLMB in ref. [19]. We arranged two scenarios with different birth model to test the RFS 
filters and their time-matching versions [22].  

In addition of the structure of filters themselves, the scanning mode of sensor plays an 
important role in the tracking performance of the filters. Scanning model is mainly divided 
into continuous scanning and discontinuous scanning. The traditional mechanical scanning 
mode is that directional continuous which scans repeatedly from 180°-0° in clockwise 
direction or from 0°-180° in anticlockwise direction. Electrical scanning mode not only 
completes the mode that mechanical scanning does, but also realizes intermittent out-of-order 
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scanning mode. In particular, the order of discontinuous scanning is shown in the Table 2 
under the 20 sectors. Both modes use the velocity of 180°/s. 

 
Table 2. The Order of non-continuous Scanning Model 

Sector 1 2 3 4 5 6 7 8 9 10 
Left border 0° 9° 18° 27° 36° 45° 54° 63° 72° 81° 

Right border 9° 18° 27° 36° 45° 54° 63° 72° 81° 90° 
order 1 3 5 7 9 11 13 15 17 19 
Sector 11 12 13 14 15 16 17 18 19 20 

Left border 90° 99° 108° 117° 126° 135° 144° 153° 162° 171° 
Right border 99° 108° 117° 126° 135° 144° 153° 162° 171° 180° 

order 2 4 6 8 10 12 14 16 18 20 

5.2 Scenario 1 
In the first scenario, we identify several birth places with low-weight which can be found in 
ref. [12]. The birth model parameterized by 3bn = , 0.03b b

k kw r= = , the mean of Gaussian 
components are [ ],1 1000,0,0,100,0,0b

km = , [ ],2 1500,0,0,1000,0,0b
km = − and

[ ],3 1200,0,0,100,0,0b
km = − . The covariance of Gaussian components is set as 

[ ]( )2
10,10,10,10,10,10b

kP diag= . We conduct 200 Monte Carlo runs with on Matlab 2021a 
2.50 GHz Intel I5 laptop to obtain root mean square GOSPA error in Fig. 4, estimated 
cardinality [9] in Fig. 5 and time cost in Fig. 6. Fig. 4 can be refined as: (a)-(d) indicate the 
results of directional continuous scanning mode and (e)-(h) indicate the results of out-of-order 
mode. In this case, (a)(e) for GOSPA error, (b)(f) for localization error, (c)(g) for false target 
error, (d)(h) for missed target error. Fig. 5 (a) indicates the results of directional scanning mode  
 
 

 
 

Fig. 4. Performance comparison among four RFS filters with the time-matching version in Scenario 1. 
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Fig. 5. Estimated cardinality against time of filters in Scenario 1.  
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Fig. 6. Time cost of filters in Scenario 1.  
 

and (b) indicates the results of out-of-order scanning mode. Fig. 6 (a) and (b) indicate the 
results of directional scanning mode and out-of-order scanning mode, respectively. 

Under this birth model, we can see that time-matching Bayesian filtering framework can 
improve the tracking performance of the four RFS-based filters in MTT problems. The original 
filters have significantly larger localization error than the time-matching RFS filters in case of 
little difference among false target error, missed target error and cardinality from Fig. 4 and 
Fig. 5. Contrary to the increase of localization error due to the incremental number of targets 
in the whole simulation process over time in PMBM filter, TM-PMBM filter appears to be is 
more stable than PMBM filter, for the reason that the diversity of sampling time is taken into 
account and the additional measurement error is reduced under both scanning mode. It is 
obvious that PMBM filter has greater fluctuations on localization error than that of TM-
PMBM filter in out-of-order discontinuous scanning. TM-Bernoulli filter is better than TM-
PHD filter without error in the first moment approximation. TM-PMBM filter and TM-MBM 
filter have better ability to deal with global hypotheses than TM-GLMB filter for association 
ambiguity. Besides, TM-PMBM filter take slight advantage over TM-MBM filter in this birth 
model. 

All the errors under out-of-order scanning are more fluctuating than one under directional 
continuous scanning. There are lots of high peaks in false target error and missed target error 
in PHD filter under out-of-order scanning compared to that under directional scanning because 
the former mode lead to the repeated computation due to the growing number of targets and 
increasing velocity. This is reflected in the Fig. 6 (b) that the number of targets filter tracks 
decreases dramatically after step 75. Similar to PMBM filter, the TM-PMBM filter can 
overcome this shortcoming maximally that the error curve is more flatter and the cardinality 
is more close to the real one which exhibits less impact from out-of-order scanning. 

The operation of time-matching will make the TM-PMBM and TM-MBM consume more 
time than that of original ones due to the structure of multi-Bernoulli mixture. In spite of this, 
they are still faster than GLMB and TM-GLMB. Subsequently, we can address the problem 
by simplifying PMBM into Poisson Multi-Bernoulli (PMB) distribution to obtain the best 
fitting PMB filter [27] in time-matching method and handle time bottleneck in our future work. 

javascript:;
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5.3 Scenario 2 
In the second scenario, we do not stare at the known areas, but take care of the wide range of 
area covered the region of interest which is more common in sensor application. The number 
of birth places decreased to one and the covariance is expanded to a certain extent. The birth 
model is parameterized by nb = 1, 0.03b b

k kw r= = , the mean of Gaussian component is ,1b
km = 

[0,0,0,1000,0,0], and the covariance is set as b
kP  = [ ]( )2

1000,100,100,1000,100,100diag . 
Likewise, we conduct 200 Monte Carlo runs in both scanning mode so as to obtain root 

mean square GOSPA error in Fig. 7, estimated cardinality in Fig. 8 and time cost in Fig. 9. 
The sorts of results are the same as that in Fig. 4 to Fig. 6. The order of discontinuous scanning 
is the same as Scenario 1’s using the velocity of 180°/s. Similar to Scenario 1, the time-
matching TM-PMBM filter exhibit significantly lower localization error than that of the 
PMBM filter and the TM-PHD filter behaves badly in the out-of-order scanning mode at the 
same way. In a nutshell, the TM-PMBM filter performs better than any other filters in this 
scenario under both scanning modes. For missed targets error, it is still the best. 

The discernible differences in the birth model can still make a great influence on results. 
First of all, there are high peaks in step 20, 40 on account of new birth in scenario 1 as we can 
see in the localization error, whereas, localization error curve in the scenario 2 is more flatter 
and the false target error is much lower. The total GOSPA error in scenario 2 produces more 
violent shaking than that in scenario 1 due to the occurrence of larger missed detection error 
because it lower the probability of known birth information. We can also see that all filters 
take time to reach the true number of the targets and TM-PMBM filter needs the least time in 
Fig. 8 and Fig. 9. 

 
 

 
 
Fig. 7. Performance comparison among four RFS filters with the time-matching version in Scenario 2. 
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Fig. 8. Estimated cardinality against time for the filters in Scenario 2.  
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Fig. 9. Time cost of the original filters and the time-matching filters in Scenario 2.  
 

One thing worth mentioning i.e., the TM-PMBM filter have an edge over TM-MBM filter 
in term of missed target error because of its uncertainty that measurements associated with the 
Bernoulli components when the priori density of birth is more extensive. Creating new targets 
from measurements makes TM-PMBM filter exhibits lower missed target error than that of 
the other filters to a certain extent and TM-PMBM filter is more widely used than TM-MBM.  

6. Conclusion 
In this paper, aiming at the problem of dealing with sampling time diversity in sensor 

scanning process, we propose the Poisson multi-Bernoulli mixture filter based on time-
matching method. We provide the calculation formula of different types of targets after adding 
sampling time and use a reasonable representation of conjugate prior for the union of PPP and 
MBM. Simulation based on Gaussian mixture model also demonstrate that the superiority of 
the structure and conjugate prior form for the time-matching Poisson multi-Bernoulli mixture 
filter and validity of coping with the time problem that the scanning process of prediction and 
update do not match. Whether in the selected birth mode or scanning mode, the time-matching 
Poisson multi-Bernoulli mixture filter is superior to other filters.                               

In the further research, we have many directions to practice. How to introduce the time-
matching Poisson multi-Bernoulli mixture filter into the multi-sensor and multi-scan is worth 
thinking about. Another work is an extension of the work in this paper, which considers the 
time-matching PHD filter and PMB filter on the trajectory set, in order to achieve the 
extraction of complete trajectory information. 
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