• Title/Summary/Keyword: Time graph

Search Result 938, Processing Time 0.861 seconds

Past and State-of-the-Art SLAM Technologies (SLAM 기술의 과거와 현재)

  • Song, Jae-Bok;Hwang, Seo-Yeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.372-379
    • /
    • 2014
  • This paper surveys past and state-of-the-art SLAM technologies. The standard methods for solving the SLAM problem are the Kalman filter, particle filter, graph, and bundle adjustment-based methods. Kalman filters such as EKF (Extended Kalman Filter) and UKF (Unscented Kalman Filter) have provided successful results for estimating the state of nonlinear systems and integrating various sensor information. However, traditional EKF-based methods suffer from the increase of computation burden as the number of features increases. To cope with this problem, particle filter-based SLAM approaches such as FastSLAM have been widely used. While particle filter-based methods can deal with a large number of features, the computation time still increases as the map grows. Graph-based SLAM methods have recently received considerable attention, and they can provide successful real-time SLAM results in large urban environments.

Pre- and Post Processing System on Prediction Analysis of Thermal Stress in Mass Concrete Structure (매스콘크리트의 온도균열 예측해석에서의 전후처리 시스템 개발에 관한 연구)

  • 김유석;강석화;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.270-274
    • /
    • 1996
  • Until recently pre & post-processing of finite element model has been heavily relied on expensive graphic peripheral devices. But today, with the aid of inexpensive microcomputers, very effective pre & postprocessor graphics has been developed. In this study, Pre & Post processor(MASSPRE, MASSPOST) of prediction analysis of thermal stress in mass concrete structure is developed. The developed pre & post processors are raise to the efficiency in making input data for the main program and analysis of the results produced by the main program. This MASSPOST presents a stress contour graph, volume slice, time-temperature history graph, time-stress history graph, etc.

  • PDF

Shortest Path-Finding Algorithm using Multiple Dynamic-Range Queue(MDRQ) (다중 동적구간 대기행렬을 이용한 최단경로탐색 알고리즘)

  • Kim, Tae-Jin;Han, Min-Hong
    • The KIPS Transactions:PartA
    • /
    • v.8A no.2
    • /
    • pp.179-188
    • /
    • 2001
  • We analyze the property of candidate node set in the network graph, and propose an algorithm to decrease shortest path-finding computation time by using multiple dynamic-range queue(MDRQ) structure. This MDRQ structure is newly created for effective management of the candidate node set. The MDRQ algorithm is the shortest path-finding algorithm that varies range and size of queue to be used in managing candidate node set, in considering the properties that distribution of candidate node set is constant and size of candidate node set rapidly change. This algorithm belongs to label-correcting algorithm class. Nevertheless, because re-entering of candidate node can be decreased, the shortest path-finding computation time is noticeably decreased. Through the experiment, the MDRQ algorithm is same or superior to the other label-correcting algorithms in the graph which re-entering of candidate node didn’t frequently happened. Moreover the MDRQ algorithm is superior to the other label-correcting algorithms and is about 20 percent superior to the other label-setting algorithms in the graph which re-entering of candidate node frequently happened.

  • PDF

(An O(log n) Parallel-Time Depth-First Search Algorithm for Solid Grid Graphs (O(log n)의 병렬 시간이 소요되는 Solid Grid 그래프를 위한 Depth-First Search 알고리즘)

  • Her Jun-Ho;Ramakrishna R.S.
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.7
    • /
    • pp.448-453
    • /
    • 2006
  • We extend a parallel depth-first search (DFS) algorithm for planar graphs to deal with (non-planar) solid grid graphs, a subclass of non-planar grid graphs. The proposed algorithm takes time O(log n) with $O(n/sqrt{log\;n})$ processors in Priority PRAM model. In our knowledge, this is the first deterministic NC algorithm for a non-planar graph class.

Action Selection of Multi-Agent by dynamic coordination graph and MAX-PLUS algorithm for Multi-Task Completion (멀티 태스크 수행을 위한 멀티에이전트의 동적 협력그래프 생성과 MAX-PLUS 방법을 통한 행동결정)

  • Kim, Jeong-Kuk;Im, Gi-Hyeon;Lee, Sang-Hun;Seo, Il-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.925-926
    • /
    • 2006
  • In the multi-agent system for a single task, the action selection can be made for the real-time environment by using the global coordination space, global coordination graph and MAX-PLUS algorithm. However, there are some difficulties in multi-agent system for multi-tasking. In this paper, a real-time decision making method is suggested by using coordination space, coordination graph and dynamic coordinated state of multi-agent system including many agents and multiple tasks. Specifically, we propose locally dynamic coordinated state to effectively use MAX-PLUS algorithm for multiple tasks completion. Our technique is shown to be valid in the box pushing simulation of a multi-agent system.

  • PDF

A Study on Integration of Process Planning and Scheduling Using AND/OR Graph (AND/OR 그래프를 이용한 공정계획과 일정계획의 통합에 관한 연구)

  • Kim, Ki-Dong;Jeong, Han-Il;Chung, Dae-Young;Park, Jin-Woo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.2
    • /
    • pp.323-341
    • /
    • 1997
  • Traditionally, the Process Planning problems and the Scheduling problems have been considered as independent ones. However, we can take much advantages by solving the two problems simultaneously. In this paper, we deal with the enlarged problem that takes into account both the process planning and the scheduling problems. And we present a solution algorithm for the problem assuming that the given process plan data is represented by AND/OR graph. A mathematical model(mixed ILP model) whose objective is the minimization of the makespan, is formulated. We found that we can get the optimal solutions of the small-size problems within reasonable time limits, but not the large-size problems. So we devised an algorithm based on the decomposition strategy to solve the large-scale problems (realistic problems) within practical time limits.

  • PDF

Skeletal Chemical Mechanisms for a Diesel Fuel Surrogate by the Directed Relation Graph(DRG) (직접 관계 그래프(DRG)를 이용한 디젤 연료의 상세 화학 반응 기구 축소화)

  • Lee, Young-J.;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.2
    • /
    • pp.16-22
    • /
    • 2011
  • It is a challenging task to apply large detailed chemical mechanisms of fuel oxidation in simulation of complex combustion phenomena. There exist a few systematic methodologies to reduce detailed chemical mechanisms to smaller sizes involving less computational load. This research work concerns generation of a skeletal chemical mechanism by a directed relation graph with specified accuracy requirement. Two sequential stages for mechanism reduction are followed in a perfectly stirred reactor(PSR) for high temperature chemistry and to consider the autoignition delay time for low and high temperature chemistry. Reduction was performed for the detailed chemical mechanism of n-heptane consisting of 561 species and 2539 elementary reaction steps. Validation results show acceptable agreement for the autoignition delay time and the PSR calculation in wide parametric ranges of pressure, temperature and equivalence ratio.

An Optimal ILP Scheduling Algorithm on Linear Data-Flow Graph for Multiprocessor Design (멀티프로세서 설계를 위한 Linear Data-Row Graph의 최적화 ILP 알고리즘)

  • Kim Ki-Bog;Lin Chi-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.6 s.336
    • /
    • pp.49-58
    • /
    • 2005
  • In this paper, we propose an optimal ILP scheduling algorithm for multiprocessor design on LDFG(Linear Data-Flow Graph) that can be represented by homogeneous synchronous data-flow. The proposed computation in this paper does not contain data-dependent, all scheduling decisions for such algorithms can be taken at compile time, only fully static overlapped schedules are considered. It means that all linear have the same schedule and the same processor assignment. In this paper, the resource-constrained problem is addressed, for the LDFG optimization for multiprocessor design problem formulating ILP solution available to provide optimal solution. The results show that the scheduling method is able to find good quality schedules in reasonable time.

Resistance Performance Simulation of Simple Ship Hull Using Graph Neural Network (그래프 신경망을 이용한 단순 선박 선형의 저항성능 시뮬레이션)

  • TaeWon, Park;Inseob, Kim;Hoon, Lee;Dong-Woo, Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.393-399
    • /
    • 2022
  • During the ship hull design process, resistance performance estimation is generally calculated by simulation using computational fluid dynamics. Since such hull resistance performance simulation requires a lot of time and computation resources, the time taken for simulation is reduced by CPU clusters having more than tens of cores in order to complete the hull design within the required deadline of the ship owner. In this paper, we propose a method for estimating resistance performance of ship hull by simulation using a graph neural network. This method converts the 3D geometric information of the hull mesh and the physical quantity of the surface into a mathematical graph, and is implemented as a deep learning model that predicts the future simulation state from the input state. The method proposed in the resistance performance experiment of simple hull showed an average error of about 3.5 % throughout the simulation.

A time-cost tradeoff problem with multiple interim assessments under the precedence graph with two chains in parallel

  • Choi, Byung-Cheon;Min, Yunhong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.3
    • /
    • pp.85-92
    • /
    • 2018
  • We consider a project scheduling problem in which the jobs can be compressed by using additional resource to meet the corresponding due dates, referred to as a time-cost tradeoff problem. The project consists of two independent subprojects of which precedence graph is a chain. The due dates of jobs constituting the project can be interpreted as the multiple assessments in the life of project. The penalty cost occurs from the tardiness of the job, while it may be avoided through the compression of some jobs which requires an additional cost. The objective is to find the amount of compression that minimizes the total tardy penalty and compression costs. Firstly, we show that the problem can be decomposed into several subproblems whose number is bounded by the polynomial function in n, where n is the total number of jobs. Then, we prove that the problem can be solved in polynomial time by developing the efficient approach to obtain an optimal schedule for each subproblem.