
Journal of The Korea Society of Computer and Information

Vol. 23 No. 3, pp. 85-92, March 2018

www.ksci.re.kr

https://doi.org/10.9708/jksci.2018.23.03.085

A time-cost tradeoff problem with multiple interim assessments under the

precedence graph with two chains in parallel

1)Byung-Cheon Choi*, Yunhong Min**

Abstract

We consider a project scheduling problem in which the jobs can be compressed by using additional

resource to meet the corresponding due dates, referred to as a time-cost tradeoff problem. The

project consists of two independent subprojects of which precedence graph is a chain. The due dates

of jobs constituting the project can be interpreted as the multiple assessments in the life of project.

The penalty cost occurs from the tardiness of the job, while it may be avoided through the

compression of some jobs which requires an additional cost. The objective is to find the amount of

compression that minimizes the total tardy penalty and compression costs. Firstly, we show that the

problem can be decomposed into several subproblems whose number is bounded by the polynomial

function in , where  is the total number of jobs. Then, we prove that the problem can be solved

in polynomial time by developing the efficient approach to obtain an optimal schedule for each

subproblem.

▸Keyword: Project scheduling, Time-cost tradeoff, Parallel precedence graph

I. Introduction

In project management, a manager need to consider two

conflicting objectives: (1) minimizing project completion time

and (2) minimizing the project cost. The completion time,

referred to as a makespan, of a project can be reduced by

investing more resources which incurs the increase of project

cost. The time-cost tradeoff problem (TCTP) has a form either

of minimization of the project’s cost under a specified due

date or of minimization of makespan under a given budget.

When the makespan of a project is considered either as

an objective or a constraint, we assume that only one

assessment exists during the whole project. In reality, however,

there may exist multiple assessments in the middle of the

project with respect to the corresponding interim due dates,

and thus some penalties can occur if the project at each

assessment does not go along according to a planned schedule.

For example, a venture capital company begins to makes small

investments on a start-up and then determines whether the

additional investment is carried out or not, based on what the

start-up achieves compared with its initial plan [3, 14].

In this paper, we consider the TCTP with multiple

assessments in which a project consists of multiple jobs

and some jobs have their own due dates. Jobs with their

own due dates are called milestones. In general, there

exist the precedence relations among jobs and these

relations are represented by the graph, called the

precedence graph. In the precedence graph, each node

corresponds to job and the arc between two jobs

represents their precedence.

∙First Author: Byung-Cheon Choi, Corresponding Author: Yunhong Min

*Byung-Cheon Choi (polytime@cnu.ac.kr), School of buisiness, Chungnam National University

**Yunhong Min (yunhong.min@inu.ac.kr), Graduate School of Logistics, Incheon National University

∙Received: 2018. 01. 30, Revised: 2018. 02. 05, Accepted: 2018. 02. 28.

∙This work was supported by research fund of Chungnam National University in 2017.

86 Journal of The Korea Society of Computer and Information

Each job has its own processing time which can be

compressed through the use of some resources, e.g.,

human or capital. If a milestone fails to be completed

within its due date, it incurs the penalty cost. The penalty

cost, however, can be avoided by reducing or

compressing the processing time of some jobs. The

objective is to minimize the sum of the tardiness and the

compression costs. We describe the tardy and

compression costs as a weight of the tardy milestone and

the linear function for the amount of compression,

respectively.

Our project scheduling problem belongs to the class of

the TCTP with the linear compression cost function,

referred to as a LTCTP. For a comprehensive review of

the TCTP with more general compression cost function

(e.g., convex or concave), see [2, 10, 12, 13]. Fulkerson

[9] and Kelley [11] considered the LTCTP to minimize

the makespan, subject to a constraint on the budget for

the total amount of compression, and proposed an efficient

algorithm based on the network flow model. Choi and

Chung [5] considered two LTCTP’s with multiple

milestones on a single chain precedence graph. The

objective of the first is to minimize the total weighted

number of tardy jobs with a constraint on the total

compression cost. The second objective is to minimize

the sum of the total compression cost and the total

weighted number of tardy jobs. They proved the weak

NP-hardness of the first problem and the polynomiality of

the second. Choi and Park [6] considered the general

version of the second problem in [5] such that the

compression cost function is convex or concave. They

proved the weak NP-hardness and the polynomiality of

the problems with the concave and the convex

compression cost functions, respectively. Choi and Chung

[7] considered the problem in [6] with the concave

compression cost function, and investigated the optimality

properties that make the problem polynomially solvable.

The problem in this paper can be considered as the

general version of the problem in [5, 6, 7], in that more

general precedence graph, i.e., two chains in parallel, is

considered. The precedence graph of two chains in

parallel is motivated from the situation such that

The project consists of several independent subproject

whose precedence graph can be described as a chain.

The project is started after dividing up the project into

several subproejcts, and completed after assembling the

completed subprojects.

Our problem can be formally stated as follows. The

problem can be represented by a activity-on-node graph

   consisting of two chains in parallel, where

        is the set of jobs and 

is the set of precedence relations. Then, the resulting

precedence graph is described as Fig. 1. Let the jobs in

   be referred to as the set of start and

terminal jobs.

Fig. 1. The precedence graph

For the chain   ,      is the set

of jobs consisting the chain  . Associated with job

∈, is an initial processing time , a maximal

amount for compression   and a compression cost ratio

  . Let   ∈ be the vector of which

component  is the compression amount of job 

subject to  ≤  ≤ . Note that   ∈

completely characterizes the schedule, because there

exists an optimal schedule such that each job is started

as soon as possible. Thus, we call   ∈ a

schedule. Let job  be uncompressed and fully

compressed in a schedule , if    and   ,

respectively. Let  ⊆  be the set of milestones, i.e.,

jobs with due dates. For ∈, let  and   be the

due date and the penalty cost for tardiness of milestone

 , respectively. Let  be the completion time of

job  in a schedule . Note that we can transform the

case with  ⊆  into the one with    by letting

  
∈

 and     for ∈. It is clear

that the optimal schedules of the original and transformed

cases are identical. Without loss of generality, henceforth,

we assume that   , and call milestone as job. Our

problem, called Problem P, can be formulated as follows:

min   
∈

  
∈



 ′′ ′′ ≤ ′′  ′′ ∈
 ≤  ≤       

A time-cost tradeoff problem with multiple interim assessments

under the precedence graph with two chains in parallel 87

where  is the set of tardy jobs in . To exclude

a trivial case, we assume that the zero vector  with


   for each ∈ is not an optimal schedule.

The remainders of the paper are organized as follows.

Section 2 decomposes Problem P into the smaller

subproblems whose polynomialities imply the

polynomiality of Problem P. Section 3 develops the effi

cient algorithms for each subproblem. Finally, Section 4

presents some concluding remarks and future works.

II. Decomposition of Problem P

In this section, we show that Problem P can be

decomposed into the subproblems by using the concept of

the just-in-time (JIT) job. A job  is said to be

just-in-time (JIT), if it is completed exactly at  in an

optimal schedule. Firstly, we present some optimality

conditions.

Lemma 1 There exists an optimal schedule such that at

least one JIT job exists.

Proof. Suppose that a job  is compressed and the

JIT job does not exist in an optimal schedule . We can

construct a new schedule  by letting   
  where

   is sufficiently small value. Since

    and 
∈


  

∈


 

however,    . This is a contradiction. ■

Lemma 2 There exists an optimal schedule such that

the jobs after the last JIT jobs in ∪ and ∪ are

uncompressed.

Proof. If job (0,2) is the JIT job in an optimal schedule

 . Then, we assume that job (0,2) is not the JIT job in

. Suppose that in  there exists a compressed job

 after the last JIT jobs in ∪ or ∪. Then, we

can construct a new schedule  by letting     
  

where    is sufficiently small value. Since

   and 
∈


  

∈




however,    . This is a contradiction. ■

For each   , let  and  be the first and

the last JIT jobs on chain  in the optimal schedule,

respectively. Depending on the existences of jobs 

and   on each chain  , the structure of the optimal

schedule belongs to one of the three cases in Fig. 2. Note

that if chain  has one JIT job, then

   for each   .

In Case 1, both chains have the JIT job, while in Cases

2 and 3, either one and neither of chains has no JIT job,

respectively.

It is observed that if we know the existences and

positions of JIT jobs in an optimal solution, the schedules

of the remaining jobs in the optimal solution can be

obtained by solving some of subproblems in Fig. 3. For

example, Cases 1 and 2 consist of subproblems 1–3 and

subproblems 1 and 5, respectively.

By the observation above, we can have the following

theorem.

Theorem 1 Problem P can be solved in polynomial time

if the five subproblems in Fig. 3 are polynomially

solvable.

Proof. It is observed that the possible number of the

cases is 


 depending on which jobs in each chain

become the first and the last JIT job. Since each case

belongs to one type of Cases 1–3 and consists of at most

four subproblems in Fig. 3, the total number of the

subproblems that we should solve to find an optimal

schedule for Problem P is 


 . Henceforth, we show

that Problem P is polynomially solvable by proving the

polynomiality of Subproblems 1–5. ■

Fig. 2. Three cases

88 Journal of The Korea Society of Computer and Information

Fig. 3. Five subproblems

III. Polynomiality of Subproblems

In this section, we show that five subproblems in Fig. 3

are polynomially solvable. It is known from [5] that the

polynomial solvability of Subproblem 1 was proved. Thus,

we consider only Subproblems 2–5. The following

notation is useful for the subsequent expositions. For

each chain   ,

     and      

1. Subproblem 2

For simplicity, we introduce some notation. For each

chain   , let

min  min and max  max,

where ∆  
∈∪

 
and

  arg   for ∈ (1)

If multiple jobs have the minimum compression cost

ratio in (1), then the one processed earliest is selected,

because this way guarantees the schedule with the

smallest total penalty for the tardy jobs.

Lemma 3 There exists an optimal schedule  for

Subproblem 2 such that

(i) If max  min then,

 
  min min for   .

(ii) If max  min and  ≤ 


then,

 
  minmin.

(iii) If max  min and   


then,

 
 ≥ minmin

 for   .

Proof. Firstly, consider the case (i). Without loss of

generality, assume that   max and   min .

Suppose that 
  min . This implies the

existence of job  with 
≤ 

and 
 . If


 

then we can construct a new schedule  by

letting 
 

  and 
 

  where    is

sufficiently small. Since    , this is a

contradiction. If 
 

, then we can construct a new

schedule  by letting 
 

  and 
 

 

where   min


 

 . Since job  is

processed before job ,    . By applying

this argument repeatedly, we can construct another

optimal schedule satisfying (i) or a contradiction occurs.

The cases (ii) and (iii) can be proved by the similar

argument, and hence we omit them. ■

Based on Lemma 3, we can construct an algorithm to

obtain an optimal schedule for Subproblem 2 as follows:

Algorithm Out-Tree

Step 1. Set    and    for    and

  .

Step 2. Find .

Step 3. If max  min then go to Step 3-1, while

 go to Step 3-2, otherwise.

 Step 3-1 For   , update 
 

 
and

 max by letting

 
 

, 
 

, 
 

 and

max  max max
,

 where  min min, and go to Step 3-3

 Step 3-2 If  ≤ 


, then update

    and m in by letting

    ,    ,     and

 min  min ,

 where  minmin.

 Otherwise, for   , update 
 

 
and

 min by letting

 
 

, 
 

, 
 

 and

 min  min ,

A time-cost tradeoff problem with multiple interim assessments

under the precedence graph with two chains in parallel 89

 where  minmin
.

 Step 3-3 If min  , then STOP.

 Step 3-4 If   , then set   ∞ and go

 to Step 2.

Note that Algorithm Out-Tree runs in  .

Theorem 2 Subproblem 2 can be solved in polynomial

time.

Proof. It holds immediately from Algorithm Out-Tree.

■

2. Subproblem 3

It is observed from Lemma 2 that if job (0,2) is not a

JIT job, then all jobs are uncompressed in an optimal

schedule for Subproblem 3. Thus, we assume that job

(0,2) is a JIT job in the optimal schedule. For chain

  , let

min   and max  max,

where   max
 

∈∪

  and

  arg   for ∈ (2)

If multiple jobs have the minimum compression cost

ratio in (2), then the one processed earliest is selected,

because this way guarantees the schedule with the

smallest total penalty. Then, we can characterize the

properties of the optimal schedule of which statements

and proofs are similar to Lemma 3 (Thus, we omit the

proof).

Lemma 4 There exists an optimal schedule  for

Subproblem 3 such that

(i) If max  min then,

 
  min min for   .

(ii) If max  min and  ≤ 


then,

 
  minmin.

(iii) If max  min and   


then,

 
 ≥ minmin

 for   .

Based on Lemma 4, we cam construct an algorithm to

obtain an optimal schedule for Subproblem 3 as follows:

Algorithm In-Tree

Step 1. Set    and    for    and

    .

Step 2. Find .

Step 3. If max  min then go to Step 3-1, while

 go to Step 3-2, otherwise.

 Step 3-1 For   , update 
 

 
and

 max by letting

 
 

 , 
 

  , 
 

 and

 max  max max
,

 where  min min, and go to Step 3-3.

 Step 3-2 If  ≤ 


, then update

    and min by letting

     ,     ,     and

 min  min  ,

 where  minmin. Otherwise, for   ,

 update 
 

 
and min by letting

 
 

 , 
 

 , 
 

 and

 min  min  ,

 where  minmin
.

 Step 3-3 If min  , then STOP.

 Step 3-4 If   , then set   ∞ and go

 to Step 2.

Note that Algorithm In-Tree runs in  .

Theorem 3 Subproblem 3 can be solved in polynomial

time.

Proof. It holds immediately from Algorithm In-Tree. ■

3. Subproblem 4

In this subsection, we show that Subproblem 4 can be

reduced to either Subproblem 2 or Subproblem 3..

Lemma 5 There exists an optimal schedule  for

Subproblem 4 such that at least one of jobs in  is fully

compressed or uncompressed.

Proof. Suppose that each job in  is partially

compressed in . Consider two cases.

(i)  ≠: For simplicity, let   . We can

construct a new schedule  by letting   
  and

  
  where    is sufficiently small value.

Then, it is observed that

   and 
∈


  

∈




which implies    .

90 Journal of The Korea Society of Computer and Information

(ii)   : We can construct a new schedule  by

letting   
  and   

  , where

  min 
  

 . It is observed that

 ≤  and 
∈


  

∈




which implies  ≤  . ■

Theorem 4 Subproblem 4 can be solved in polynomial

time.

Proof. By Lemma 5, it suffices to consider the

following two cases

(i) Job (0,1) is fully compressed or uncompressed: In

this case, Subproblem 4 is reduced to Subproblem 3 with

new jobs (0,3) and (0,4) such that the processing times of

jobs (0,3) and (0,4) are  or  , and their

maximal amount for compressions are zeros (See Fig. 4).

Fig. 4. The precedence graph for Subproblem 3 reduced

from Subproblem 4

(ii) Job (0,2) is fully compressed or uncompressed: If

job (0,2) is not a JIT job, then it is observed from Lemma

2 that in an optimal schedule ,

 
   for ∈∪∪.

Thus,


  max i f max≤  and  ≤ 

 

where    . If job (0,2) is a JIT job, then

Subproblem 4 is reduced to Subproblem 2 with new JIT

jobs (0,5) and (0,6) such that the processing times of jobs

(0,5) and (0,6) are  or   and their maximal

amount for compressions are zeros (See Fig. 5). ■

Fig. 5. The precedence graph for Subproblem 2 reduced

from Subproblem 4

4. Subproblem 5

For Subproblem 5, it is observed from Lemma 2 that if

job (0,2) is not a JIT job, all jobs in ∪∪ are

uncompressed in an optimal schedule, which implies that

Subproblem 5 is reduced to Subproblem 1. Thus, to

exclude this case, throughout this subsection we assume

that job (0,2) is a JIT job.

Lemma 6 If at least one of jobs in  is fully

compressed or uncompressed in an optimal schedule, then

Subproblem 5 is decomposed into some of Subproblems

1-3.

Proof. Consider two cases.

(i) Job (0,1) is fully compressed or uncompressed:

Subproblem 5 is reduced to Subproblems 1 and 3 with

new jobs (0,3) and (0,4) such that the processing imes of

jobs (0,3) and (0,4) are  or  , and their

maximal amount for compressions are zeros (See Fig. 6).

Fig. 6. The precedence graphs for Subproblem 1 and 3

reduced from Subproblem 5

(ii) Job (0,2) is fully compressed or uncompressed:

Subproblem 5 is reduced to Subproblems 1 and 2 with

new JIT jobs (0,5) and (0,6) such that the processing

times of jobs (0,5) and (0,6) are  or  , and

their maximal amount for compressions are zeros (See

Fig. 7) ■

Lemma 7 Suppose that jobs (0,1) and (0,2) are partially

compressed in an optimal schedule . Then, there exists

an optimal schedule  for Subproblem 5 such that all

jobs in  or  are fully compressed or uncompressed.

Fig. 7. The precedence graphs for Subproblems 1 and 2

reduced from Subproblem 5

A time-cost tradeoff problem with multiple interim assessments

under the precedence graph with two chains in parallel 91

Proof. Suppose that jobs ∈ and ∈ are

partially compressed in . Consider two cases.

(i)   ≠ : For simplicity, let

    . Then, we can construct a new

schedule  by letting   
 ,   

 ,

  
 , and   

  where    is

sufficiently small value. Then, it is observed that

   and 
∈


  

∈




which implies    .

(ii)     : We can construct a new

schedule  by letting   
  ,   

  ,

  
  , and   

  where

  min 
   

  
  

 . It is observed

that

 ≤  and 
∈


  

∈




which implies  ≤  . ■

Lemma 8 Suppose that jobs (0,1) and (0,2) are partially

compressed in an optimal schedule . If a partially

compressed job exists in  for , then, Subproblem 5 is

reduced to Subproblem 2, while it is reduced to

Subproblem 3, otherwise.

Proof. Consider two cases.

(i) A partially compressed job exists in  for : By

Lemma 7, this case implies that the jobs in  are fully

compressed or uncompressed in 
. Let

max  arg
   for ∈

and

min  arg
   for ∈

Then, it is observed that 
 

∈

becomes the one

of the vectors such that

Some jobs are fully compressed and the others are

uncompressed;


max

≤ 
min

;

If 
max

 
min

, job max is processed before job

 m in.
For example, assume that   ≤  ≤ 

. Then, the

set of these vectors is

  


Note that the value of 


corresponding to each

vector can be determined because job (0,2) is a JIT job.

The precedence graph corresponding to each vector is

the second graph in Fig. 7.

(ii) A partially compressed job exists in  for : By

Lemma 7, this case implies that the jobs in  are fully

compressed or uncompressed in . Thus this case is

similarly proved by changing the role of  and  in e

case (i). The precedence graph corresponding to this case

is the second graph in Fig. 6. ■

Theorem 5 Subproblem 5 can be solved in polynomial

time.

Proof. It holds immediately from Theorems 2-3 and

Lemmas 6-8. ■

IV. Conclusions

We consider the LTCTP with the multiple interim

assessments, when the precedence graph is two chains in

parallel. The objective is to minimize the total weighted

number of tardy jobs plus the total compression cost.

Firstly, we decompose the problem into subproblems,

based on JIT jobs whose number is bounded by the total

number of jobs. Then, we show that our problem is

polynomially solvable by proving the polynomiality of

each subproblem.

For future research, it would be interesting to consider

the case such that the precedence graph consists of more

than two chains in parallel, or the compression cost

function is convex or concave function.

REFERENCES

[1] C. Artigues, D. Demassey., E. Neron. “Resource-

Constrained Project Scheduling,” Wiley, 2008.

[2] E.B. Berman. “Resource allocation in a PERT network

under continuous activity time–cost function,”

Management Science Vol. 10, pp. 734–745, July 1964.

[3] J. Bell. “Beauty is in the eye of the beholder: Establishing

a fair and equitable value for embryonic high-tech

enterprises,” Venture Capital Journal, Vol. 40, pp. 33–34,

92 Journal of The Korea Society of Computer and Information

Jan. 2000.

[4] P. Bruker, A. Drexl, R. Mohring, K. Neumann, and E.

Perch. “Resource-constrained project scheduling:

Notations, classfication, models and methods,” European

Journal of Operational Research, Vol. 112, pp. 3–41, Jan.

1999.

[5] B.C. Choi, and J.B. Chung. “Complexity results for linear

time-cost tradeoff problem with multiple milestones and

completely ordered jobs,” European Journal of

Operational Research, Vol. 236, pp. 61–68, July 2014.

[6] B.C. Choi, and M.J. Park. “A continuous time-cost tradeoff

problem with multiple milestones and completely ordered

jobs,” European Journal of Operational Research Vol. 244,

pp. 748–752, Aug. 2015.

[7] B.C. Choi, and J.B. Chung. “Some special cases of a

continuous time–cost tradeoff problem with multiple

milestones under a chain precedence graph,”

Management Science and Financial Engineering, Vol. 22,

pp. 5–12, May 2016.

[8] E.L. Demeulemeester and W.S. Herroelen. “Project

scheduling - A research handbook,” Kluwer Academic,

2002.

[9] D.R. Fulkerson. “A network flow computation for project

cost curves,” Management Science, Vol. 7, pp. 167–178,

Jan. 1961.

[10] J.E. Falk, and J.L. Horowitz. “Critical path problems with

concave cost–time curves,” Management Science, Vol.

19, pp. 446–455, Dec. 1972.

[11] J.E. Kelley. “Critical path planning and scheduling:

Mathematical basis,” Operations Research, Vol. 9, pp.

296–320, June 1961.

[12] L.R. Lamberson, and R.R. Hocking. “Optimum time

compression in project scheduling,” Management

Science, Vol. 16, pp. 597–606, June 1970.

[13] J. Moussourakis, and C. Haksever. “Project compression

with nonlinear cost functions,” Journal of Construction

Engineering and Management, Vol. 136, pp. 251–[259,

Feb. 2010.

[14] W.A. Sahlmann. “Insights from the ventures capital model

of project governance,” Business Economics, Vol. 29,

pp. 35–41, July 1994.

[15] J. Weglarz. “Project scheduling - Recent models

algorithms and applications,” Kluwer Academic, 1999.

[16] J. Weglarz, J. Jozefowska, M. Mika, and G. Waligora.

“Project scheduling with finite or infinite number of

activity processing modes - a survey,” European Journal

of Operational Research, Vol. 208, pp. 177–205, Feb.

2011.

Authors

Byung-Cheon Choi received the B.S. and

Ph.D. in Industrial Engineering from Seoul

National University in 2000 and 2006,

respectively. Dr. Choi joined the faculty of

School of Business at Chungnam National

University in 2009. He is currently an

professor in School of Business at Chungnam National

University. He is interested in combinatorial optimization,

scheduling theory, and operations management.

Yunhong Min received the B.S. degree in

Industrial Engineering & Management

Science from POSTECH, and Ph.D. in

Industrial Engineering from Seoul National

University in 2006 and 2012, respectively.

Dr. Min joined the faculty of Graduate

School of Logistics at Incheon National University in 2017.

Before joining Incheon National University, he was a

research staff member of Samsung Advanced Institute of

Technology. He is interested in mathematical optimization

and machine learning and their applications to logistics

and supply chain management.

