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A time-cost tradeoff problem with multiple interim assessments under the

precedence graph with two chains in parallel
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Abstract

We consider a project scheduling problem in which the jobs can be compressed by using additional 

resource to meet the corresponding due dates, referred to as a time-cost tradeoff problem. The 

project consists of two independent subprojects of which precedence graph is a chain. The due dates 

of jobs constituting the project can be interpreted as the multiple assessments in the life of project. 

The penalty cost occurs from the tardiness of the job, while it may be avoided through the 

compression of some jobs which requires an additional cost. The objective is to find the amount of 

compression that minimizes the total tardy penalty and compression costs. Firstly, we show that the 

problem can be decomposed into several subproblems whose number is bounded by the polynomial 

function in , where  is the total number of jobs. Then, we prove that the problem can be solved 

in polynomial time by developing the efficient approach to obtain an optimal schedule for each 

subproblem.

▸Keyword: Project scheduling, Time-cost tradeoff, Parallel precedence graph

I. Introduction

In project management, a manager need to consider two 

conflicting objectives: (1) minimizing project completion time 

and (2) minimizing the project cost. The completion time, 

referred to as a makespan, of a project can be reduced by 

investing more resources which incurs the increase of project 

cost. The time-cost tradeoff problem (TCTP) has a form either 

of minimization of the project’s cost under a specified due 

date or of minimization of makespan under a given budget.

When the makespan of a project is considered either as 

an objective or a constraint, we assume that only one 

assessment exists during the whole project. In reality, however, 

there may exist multiple assessments in the middle of the 

project with respect to the corresponding interim due dates, 

and thus some penalties can occur if the project at each 

assessment does not go along according to a planned schedule. 

For example, a venture capital company begins to makes small 

investments on a start-up and then determines whether the 

additional investment is carried out or not, based on what the 

start-up achieves compared with its initial plan [3, 14].

In this paper, we consider the TCTP with multiple 

assessments in which a project consists of multiple jobs 

and some jobs have their own due dates. Jobs with their 

own due dates are called milestones. In general, there 

exist the precedence relations among jobs and these 

relations are represented by the graph, called the 

precedence graph. In the precedence graph, each node 

corresponds to job and the arc between two jobs 

represents their precedence. 
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Each job has its own processing time which can be 

compressed through the use of some resources, e.g., 

human or capital. If a milestone fails to be completed 

within its due date, it incurs the penalty cost. The penalty 

cost, however, can be avoided by reducing or 

compressing the processing time of some jobs. The 

objective is to minimize the sum of the tardiness and the 

compression costs. We describe the tardy and 

compression costs as a weight of the tardy milestone and 

the linear function for the amount of compression, 

respectively.

Our project scheduling problem belongs to the class of 

the TCTP with the linear compression cost function, 

referred to as a LTCTP. For a comprehensive review of 

the TCTP with more general compression cost function 

(e.g., convex or concave), see [2, 10, 12, 13]. Fulkerson 

[9] and Kelley [11] considered the LTCTP to minimize 

the makespan, subject to a constraint on the budget for 

the total amount of compression, and proposed an efficient 

algorithm based on the network flow model. Choi and 

Chung [5] considered two LTCTP’s with multiple 

milestones on a single chain precedence graph. The 

objective of the first is to minimize the total weighted 

number of tardy jobs with a constraint on the total 

compression cost. The second objective is to minimize 

the sum of the total compression cost and the total 

weighted number of tardy jobs. They proved the weak 

NP-hardness of the first problem and the polynomiality of 

the second. Choi and Park [6] considered the general 

version of the second problem in [5] such that the 

compression cost function is convex or concave. They 

proved the weak NP-hardness and the polynomiality of 

the problems with the concave and the convex 

compression cost functions, respectively. Choi and Chung 

[7] considered the problem in [6] with the concave 

compression cost function, and investigated the optimality 

properties that make the problem polynomially solvable. 

The problem in this paper can be considered as the 

general version of the problem in [5, 6, 7], in that more 

general precedence graph, i.e., two chains in parallel, is 

considered. The precedence graph of two chains in 

parallel is motivated from the situation such that

The project consists of several independent subproject 

whose precedence graph can be described as a chain.

The project is started after dividing up the project into 

several subproejcts, and completed after assembling the 

completed subprojects.

Our problem can be formally stated as follows. The 

problem can be represented by a activity-on-node graph 

   consisting of two chains in parallel, where 

        is the set of jobs and 

is the set of precedence relations. Then, the resulting 

precedence graph is described as Fig. 1. Let the jobs in 

   be referred to as the set of start and 

terminal jobs.

Fig. 1. The precedence graph

For the chain   ,      is the set 

of jobs consisting the chain  . Associated with job 

∈, is an initial processing time , a maximal 

amount for compression   and a compression cost ratio 

  . Let   ∈ be the vector of which 

component  is the compression amount of job 

subject to  ≤  ≤ . Note that   ∈

completely characterizes the schedule, because there 

exists an optimal schedule such that each job is started 

as soon as possible. Thus, we call   ∈ a 

schedule. Let job  be uncompressed and fully 

compressed in a schedule , if    and   , 

respectively. Let  ⊆  be the set of milestones, i.e., 

jobs with due dates. For ∈, let  and   be the 

due date and the penalty cost for tardiness of milestone 

 , respectively. Let  be the completion time of 

job  in a schedule . Note that we can transform the 

case with  ⊆  into the one with    by letting 

  
∈

 and     for ∈. It is clear 

that the optimal schedules of the original and transformed 

cases are identical. Without loss of generality, henceforth, 

we assume that   , and call milestone as job. Our 

problem, called Problem P, can be formulated as follows:

min   
∈

  
∈



 ′′ ′′ ≤ ′′  ′′ ∈
 ≤  ≤       
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where  is the set of tardy jobs in . To exclude 

a trivial case, we assume that the zero vector  with 


   for each ∈ is not an optimal schedule.

The remainders of the paper are organized as follows. 

Section 2 decomposes Problem P into the smaller 

subproblems whose polynomialities imply the 

polynomiality of Problem P. Section 3 develops the effi

cient algorithms for each subproblem. Finally, Section 4 

presents some concluding remarks and future works.

II. Decomposition of Problem P

In this section, we show that Problem P can be 

decomposed into the subproblems by using the concept of 

the just-in-time (JIT) job. A job  is said to be 

just-in-time (JIT), if it is completed exactly at  in an 

optimal schedule. Firstly, we present some optimality 

conditions.

Lemma 1 There exists an optimal schedule such that at 

least one JIT job exists.

Proof. Suppose that a job  is compressed and the 

JIT job does not exist in an optimal schedule . We can 

construct a new schedule  by letting   
  where 

   is sufficiently small value. Since

     and 
∈


  

∈


 

however,    . This is a contradiction. ■

Lemma 2 There exists an optimal schedule such that 

the jobs after the last JIT jobs in ∪ and ∪ are 

uncompressed.

Proof. If job (0,2) is the JIT job in an optimal schedule 

 . Then, we assume that job (0,2) is not the JIT job in 

. Suppose that in  there exists a compressed job 

 after the last JIT jobs in ∪ or ∪. Then, we 

can construct a new schedule  by letting     
  

where    is sufficiently small value. Since

   and 
∈


  

∈




however,    . This is a contradiction. ■

For each   , let  and  be the first and 

the last JIT jobs on chain  in the optimal schedule, 

respectively. Depending on the existences of jobs 

and   on each chain  , the structure of the optimal 

schedule belongs to one of the three cases in Fig. 2. Note 

that if chain  has one JIT job, then 

   for each   .

In Case 1, both chains have the JIT job, while in Cases 

2 and 3, either one and neither of chains has no JIT job, 

respectively. 

It is observed that if we know the existences and 

positions of JIT jobs in an optimal solution, the schedules 

of the remaining jobs in the optimal solution can be 

obtained by solving some of subproblems in Fig. 3. For 

example, Cases 1 and 2 consist of subproblems 1–3 and 

subproblems 1 and 5, respectively.

By the observation above, we can have the following 

theorem.

Theorem 1 Problem P can be solved in polynomial time 

if the five subproblems in Fig. 3 are polynomially 

solvable.

Proof. It is observed that the possible number of the 

cases is 


 depending on which jobs in each chain 

become the first and the last JIT job. Since each case 

belongs to one type of Cases 1–3 and consists of at most 

four subproblems in Fig. 3, the total number of the 

subproblems that we should solve to find an optimal 

schedule for Problem P is 


 . Henceforth, we show 

that Problem P is polynomially solvable by proving the 

polynomiality of Subproblems 1–5.  ■

Fig. 2. Three cases 
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Fig. 3. Five subproblems

III. Polynomiality of Subproblems

In this section, we show that five subproblems in Fig. 3 

are polynomially solvable. It is known from [5] that the 

polynomial solvability of Subproblem 1 was proved. Thus, 

we consider only Subproblems 2–5. The following 

notation is useful for the subsequent expositions. For 

each chain   ,

     and      

1. Subproblem 2

For simplicity, we introduce some notation. For each 

chain   , let

min  min and max  max,

where ∆  
∈∪

 
and 

  arg   for ∈   (1)

If multiple jobs have the minimum compression cost 

ratio in (1), then the one processed earliest is selected, 

because this way guarantees the schedule with the 

smallest total penalty for the tardy jobs.

Lemma 3 There exists an optimal schedule  for 

Subproblem 2 such that

(i) If max  min then, 

     
  min min for   .

(ii) If max  min and  ≤ 


then,

     
  minmin.

(iii) If max  min and   


then,

     
 ≥ minmin

 for   .

Proof. Firstly, consider the case (i). Without loss of 

generality, assume that   max and   min . 

Suppose that 
  min . This implies the 

existence of job  with 
≤ 

and 
 . If 


 

then we can construct a new schedule  by 

letting 
 

  and 
 

  where    is 

sufficiently small. Since    , this is a 

contradiction. If 
 

, then we can construct a new 

schedule  by letting 
 

  and 
 

 

where   min


 

 . Since job  is 

processed before job ,    . By applying 

this argument repeatedly, we can construct another 

optimal schedule satisfying (i) or a contradiction occurs. 

The cases (ii) and (iii) can be proved by the similar 

argument, and hence we omit them. ■

Based on Lemma 3, we can construct an algorithm to 

obtain an optimal schedule for Subproblem 2 as follows:

Algorithm Out-Tree

Step 1. Set    and    for    and 

  .

Step 2. Find .

Step 3. If max  min then go to Step 3-1, while    

      go to Step 3-2, otherwise.

   Step 3-1 For   , update 
 

 
and       

       max by letting

     
 

, 
 

, 
 

 and  

max  max max
, 

   where  min min, and go to Step 3-3

   Step 3-2 If  ≤ 


, then update

        and m in by letting 

        ,    ,     and

       min  min ,

      where  minmin. 

     Otherwise, for   , update 
 

 
and    

        min by letting 

      
 

, 
 

, 
 

 and

       min  min ,
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      where  minmin
.

   Step 3-3 If min  , then STOP.

   Step 3-4 If   , then set   ∞ and go      

       to Step 2.

Note that Algorithm Out-Tree runs in  .

Theorem 2 Subproblem 2 can be solved in polynomial 

time.

Proof. It holds immediately from Algorithm Out-Tree.  

■

2. Subproblem 3

It is observed from Lemma 2 that if job (0,2) is not a 

JIT job, then all jobs are uncompressed in an optimal 

schedule for Subproblem 3. Thus, we assume that job 

(0,2) is a JIT job in the optimal schedule. For chain 

  , let 

min   and max  max,

where   max
 

∈∪

  and 

  arg   for ∈   (2)

If multiple jobs have the minimum compression cost 

ratio in (2), then the one processed earliest is selected, 

because this way guarantees the schedule with the 

smallest total penalty. Then, we can characterize the 

properties of the optimal schedule of which statements 

and proofs are similar to Lemma 3 (Thus, we omit the 

proof).

Lemma 4 There exists an optimal schedule  for 

Subproblem 3 such that

(i) If max  min then, 

     
  min min for   .

(ii) If max  min and  ≤ 


then,

     
  minmin.

(iii) If max  min and   


then,

     
 ≥ minmin

 for   .

Based on Lemma 4, we cam construct an algorithm to 

obtain an optimal schedule for Subproblem 3 as follows:

Algorithm In-Tree

Step 1. Set    and    for    and 

    .

Step 2. Find .

Step 3. If max  min then go to Step 3-1, while      

    go to Step 3-2, otherwise.

   Step 3-1 For   , update 
 

 
and      

         max by letting

      
 

 , 
 

  , 
 

 and

      max  max max
,

     where  min min, and go to Step 3-3.

   Step 3-2 If  ≤ 


, then update 

          and min by letting

           ,     ,     and

       min  min  ,

       where  minmin. Otherwise, for   ,

       update 
 

 
and min by letting

       
 

 , 
 

 , 
 

 and 

       min  min  ,

      where  minmin
.

   Step 3-3 If min  , then STOP.

   Step 3-4 If   , then set   ∞ and go 

             to Step 2.

Note that Algorithm In-Tree runs in  .

Theorem 3 Subproblem 3 can be solved in polynomial 

time.

Proof. It holds immediately from Algorithm In-Tree. ■

3. Subproblem 4

In this subsection, we show that Subproblem 4 can be 

reduced to either Subproblem 2 or Subproblem 3..

Lemma 5 There exists an optimal schedule  for 

Subproblem 4 such that at least one of jobs in  is fully 

compressed or uncompressed.

Proof. Suppose that each job in  is partially 

compressed in . Consider two cases.

(i)  ≠: For simplicity, let   . We can 

construct a new schedule  by letting   
  and 

  
  where    is sufficiently small value. 

Then, it is observed that

   and 
∈


  

∈




which implies    . 
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(ii)   : We can construct a new schedule  by 

letting   
  and   

  , where 

  min 
  

 . It is observed that 

 ≤  and 
∈


  

∈




which implies  ≤  . ■

Theorem 4 Subproblem 4 can be solved in polynomial 

time.

Proof. By Lemma 5, it suffices to consider the 

following two cases

(i) Job (0,1) is fully compressed or uncompressed: In 

this case, Subproblem 4 is reduced to Subproblem 3 with 

new jobs (0,3) and (0,4) such that the processing times of 

jobs (0,3) and (0,4) are  or  , and their 

maximal amount for compressions are zeros (See Fig. 4).

Fig. 4. The precedence graph for Subproblem 3 reduced 

from Subproblem 4 

(ii) Job (0,2) is fully compressed or uncompressed: If 

job (0,2) is not a JIT job, then it is observed from Lemma 

2 that in an optimal schedule ,

 
   for ∈∪∪.

Thus,


  max i f max≤  and  ≤ 

 

where     . If job (0,2) is a JIT job, then 

Subproblem 4 is reduced to Subproblem 2 with new JIT 

jobs (0,5) and (0,6) such that the processing times of jobs 

(0,5) and (0,6) are  or   and their maximal 

amount for compressions are zeros (See Fig. 5). ■

Fig. 5. The precedence graph for Subproblem 2 reduced 

from Subproblem 4 

4. Subproblem 5

For Subproblem 5, it is observed from Lemma 2 that if 

job (0,2) is not a JIT job, all jobs in ∪∪ are 

uncompressed in an optimal schedule, which implies that 

Subproblem 5 is reduced to Subproblem 1. Thus, to 

exclude this case, throughout this subsection we assume 

that job (0,2) is a JIT job.

Lemma 6 If at least one of jobs in  is fully 

compressed or uncompressed in an optimal schedule, then 

Subproblem 5 is decomposed into some of Subproblems 

1-3.

Proof. Consider two cases.

(i) Job (0,1) is fully compressed or uncompressed: 

Subproblem 5 is reduced to Subproblems 1 and 3 with 

new jobs (0,3) and (0,4) such that the processing imes of 

jobs (0,3) and (0,4) are   or  , and their 

maximal amount for compressions are zeros (See Fig. 6).

Fig. 6. The precedence graphs for Subproblem 1 and 3 

reduced from Subproblem 5

(ii) Job (0,2) is fully compressed or uncompressed: 

Subproblem 5 is reduced to Subproblems 1 and 2 with 

new JIT jobs (0,5) and (0,6) such that the processing 

times of jobs (0,5) and (0,6) are   or  , and 

their maximal amount for compressions are zeros (See 

Fig. 7) ■

Lemma 7 Suppose that jobs (0,1) and (0,2) are partially 

compressed in an optimal schedule . Then, there exists 

an optimal schedule  for Subproblem 5 such that all 

jobs in  or  are fully compressed or uncompressed.

Fig. 7. The precedence graphs for Subproblems 1 and 2 

reduced from Subproblem 5
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Proof. Suppose that jobs ∈ and ∈ are 

partially compressed in . Consider two cases.

(i)   ≠ : For simplicity, let 

    . Then, we can construct a new 

schedule  by letting   
 ,   

 , 

  
 , and   

  where    is 

sufficiently small value. Then, it is observed that

   and 
∈


  

∈




which implies    . 

(ii)     : We can construct a new 

schedule  by letting   
  ,   

  , 

  
  , and   

  where 

  min 
   

  
  

 . It is observed 

that 

 ≤  and 
∈


  

∈




which implies  ≤  . ■

Lemma 8 Suppose that jobs (0,1) and (0,2) are partially 

compressed in an optimal schedule . If a partially 

compressed job exists in  for , then, Subproblem 5 is 

reduced to Subproblem 2, while it is reduced to 

Subproblem 3, otherwise.

Proof. Consider two cases.

(i) A partially compressed job exists in  for : By 

Lemma 7, this case implies that the jobs in  are fully 

compressed or uncompressed in 
. Let

max  arg
   for ∈

and

min  arg
   for ∈

Then, it is observed that 
 

∈

becomes the one 

of the vectors such that

Some jobs are fully compressed and the others are 

uncompressed;


max

≤ 
min

;

If 
max

 
min

, job max is processed before job 

 m in.
For example, assume that   ≤  ≤ 

. Then, the 

set of these vectors is

  


Note that the value of 


corresponding to each 

vector can be determined because job (0,2) is a JIT job. 

The precedence graph corresponding to each vector is 

the second graph in Fig. 7.

(ii) A partially compressed job exists in  for : By 

Lemma 7, this case implies that the jobs in  are fully 

compressed or uncompressed in . Thus this case is 

similarly proved by changing the role of  and  in e 

case (i). The precedence graph corresponding to this case 

is the second graph in Fig. 6. ■

Theorem 5 Subproblem 5 can be solved in polynomial 

time.

Proof. It holds immediately from Theorems 2-3 and 

Lemmas 6-8. ■

IV. Conclusions

We consider the LTCTP with the multiple interim 

assessments, when the precedence graph is two chains in 

parallel. The objective is to minimize the total weighted 

number of tardy jobs plus the total compression cost. 

Firstly, we decompose the problem into subproblems, 

based on JIT jobs whose number is bounded by the total 

number of jobs. Then, we show that our problem is 

polynomially solvable by proving the polynomiality of 

each subproblem.

For future research, it would be interesting to consider 

the case such that the precedence graph consists of more 

than two chains in parallel, or the compression cost 

function is convex or concave function.
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