• Title/Summary/Keyword: Time domain channel estimation

Search Result 99, Processing Time 0.03 seconds

A Simplified Time Domain Channel Tracking Scheme in OFDM Systems with Null Sub-Carriers (Null 부반송파를 갖는 OFDM 시스템에서 단순화된 시간영역 채널 추적 방식)

  • Jeon, Hyoung-Goo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.418-424
    • /
    • 2007
  • This paper proposes a scheme to track channel response in OFDM systems with null sub-carriers. The proposed channel tracking scheme estimates the channel response first in the frequency domain by using the decision directed data. The time domain channel estimation is then performed to remove additive white Gaussian noise (AWGN) components further. Due to the channel estimation in the frequency domain, no inverse matrix calculation is required in the time domain channel estimation. Computational reduction in the proposed method is about 93%, compared with the conventional time domain channel estimation method. Mean square error (MSE) and bit error rate (BER) performances are evaluated by using computer simulation. The proposed method shows the same performance as that of the conventional time domain channel estimation even though the significant computational reduction.

Performance of Channel Estimation in Two-Dimensional Modulation System

  • Nguyen, Quoc Kien;Jeon, Taehyun
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.137-140
    • /
    • 2020
  • Orthogonal time frequency space (OTFS) modulation is considered as one of the solutions to cope with high mobility channel environments. It converts the time-varying channel to the near-constant channel response in the delay-Doppler domain. This modulation scheme also benefits from the diversity in two-dimensional modulation. According to recent researches, this method outperforms the conventional OFDM modulation, especially in high-speed channel conditions. In this paper, to investigate the performance of OTFS in a practical system, channel estimation in the delay-Doppler domain is compared with the conventional method in the time-frequency domain at different mobile speeds. Simulation results confirm that the delay-Doppler domain channel estimation brings a better performance compared to the conventional one under the same overhead rate.

A Channel Estimation Method by Orthogonalizing of the time domain training signals in MIMO-OFDM systems (MIMO-OFDM 시스템에서 시간영역 훈련신호들의 직교화를 통한채널추정 방법)

  • Jeon, Hyoung-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2818-2825
    • /
    • 2013
  • In this paper, a channel estimation method by orthogonalizing of the time domain training signal in MIMO-OFDM systems is proposed. It has shown that Jeon's method[8] cannot be directly used in 4 Tx antenna MIMO-OFDM systems since the delayed Rx signals interfere the orthogonal property of the time domain training signals. As a possible solution to the problem, in this paper, a guard interval is inserted into the center of the training signals so that the orthogonal property between the Rx training signals can be maintained. It is shown by using computer simulations that the proposed method can estimate the channel response in time domain in 4 Tx antenna MIMO-OFDM systems.

Performance Analysis of Channel Estimation Schemes for MF Band Digital Radio Broadcasting System (MF 대역 디지털 라디오 방송 시스템을 위한 채널 추정 기법의 성능 분석)

  • 송정훈;김기남;노재성;조성준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.217-222
    • /
    • 2004
  • In this paper, the efficient channel estimation schemes for DRM system(AM band digital radio broadcasting standard) are investigated. In frequency domain, by means of the linear interpolation, the second order interpolation, cubic spline interpolation, and time domain interpolation, the channel impulse response is estimated respectively to compensate the attenuation due to the fading. And in time domain, the frequency channel impulse response is averaged to reduce the attenuation due to the AWGN. By the simulation, the performance of MSE, BER and the complexity of calculation is compared and analyzed for each interpolation scheme.

Performance Improvement of Channel Estimation based on Time-domain Threshold for OFDM Systems (시간영역 문턱값을 이용한 OFDM 시스템의 채널 추정 성능 향상)

  • Lee, You-Seok;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.720-724
    • /
    • 2008
  • Channel estimation in OFDM systems is usually carried out in frequency domain based on the least-squares (LS) method and the minimum mean-square error (MMSE) method with known pilot symbols. The LS estimator has a merit of low complexity but may suffer from the noise because it does not consider any noise effect in obtaining its solution. To enhance the noise immunity of the LS estimator, we consider estimation noise in time domain. Residual noise existing at the estimated channel coefficients in time domain could be reduced by reasonable selection of a threshold value. To achieve this, we propose a channel-estimation method based on a time-domain threshold which is a standard deviation of noise obtained by wavelet decomposition. Computer simulation shows that the estimation performance of the proposed method approaches to that of the known-channel case in terms of bit-error rates after the Viterbi decoder in overall SNRs.

Efficient Channel Delay Estimation for OFDM Systems over Doubly-Selective Fading Channels

  • Heo, Seo Weon;Lim, Jongtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2218-2230
    • /
    • 2012
  • In this paper, we propose an efficient channel delay estimation method for orthogonal frequency-division multiplexing (OFDM) systems, especially over doubly-selective fading channels which are selective in both the symbol time domain and subcarrier frequency domain. For the doubly-selective fading channels in single frequency network (SFN), long and strong echoes exist and thus the conventional discrete Fourier Transform (DFT) based channel delay estimation system often fails to produce the exact channel delay profile. Based on the analysis of the discrete-time frequency response of the channel impulse response (CIR) coefficients in the DFT-based channel delay estimation system, we develop a method to effectively extract the true CIR from the aliased signals by employing a simple narrow-band low-pass filter (NB-LPF). The performance of the proposed system is verified using the COST207 TU6 SFN channel model.

Design of SC-FDE Transmission Structure to Cope with Narrow Band Interference (협대역 간섭신호 대응을 위한 SC-FDE 전송 구조 설계)

  • Joo, So-Young;Jo, Sung-Mi;Hwang, Chan-Ho;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.787-793
    • /
    • 2018
  • In this paper, we propose a new single carrier - frequency domain equalization (SC-FDE) structure to cope with narrow band interference. In the conventional SC-FDE structure, when a high-power narrow band interference exists, channel estimation and data recovery is difficult. To relieve from this problem, this paper proposes a new SC-FDE frame structure to enable frequency-domain channel estimation in the environments that exist narrow band interference. Specifically, in the conventional method, the channel estimation is performed in time-domain first and from that, the frequency-domain channel is obtained by Fourier transform. In contrast, we proposed a new SC-FDE structure to enable frequency-domain channel estimation directly from received signals without time-domain channel estimation. The receiver performance improvement is verified through computer simulation. According to the results, the proposed technique can detect the signal with less than 2 dB loss compared with jammer-free environments, while the conventional method does not communicate with each other.

Time and Frequency Synchronization Algorithm for IEEE 802.16.1a Based Talk-Around Direct Communications (IEEE 802.16.1a 기반 단말간 직접통신을 위한 시간 및 주파수 동기화 알고리즘)

  • Bae, Jimin;Kim, Hyunsu;Chang, Sungcheol;Yoon, Chulsik;Choi, Jihoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.2
    • /
    • pp.191-200
    • /
    • 2013
  • In this paper, we propose a new estimation method of time offset, frequency offset, and signal to interference plus noise ratio (SINR) using the synchronization channel preamble to provide IEEE 802.16.1a based talk-around direct communications (TDC). The proposed scheme estimates the time offset and frequency offset both in the time domain and in the frequency domain considering the preamble structure. In addition, it improves the estimation accuracy by combining the estimated values in two domains taking into account TDC synchronization scenarios. Through numerical simulations in the TDC channel environments, the performance of the proposed algorithm is compared with those of existing techniques such as the time domain estimation and the frequency domain estimation.

A New SC-FDE Transmission Structure for Coping with Narrow Band Jammers and Reducing Pilot Overhead (협대역 재머 대응과 파일럿 오버헤드 감소를 위한 새로운 SC-FDE 전송구조)

  • Joo, So-Young;Choi, Jeung-Won;Kim, Dong-Hyun;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.981-987
    • /
    • 2019
  • In this paper, we propose a new SC-FDE (single carrier frequency domain equalization) structure to cope with narrow band interference signals or jammers and reduce pilot overhead. The conventional SC-FDE structure has a problem that the receiver performance degrades severely due to difficulty in time-domain channel estimation when narrow band jammers exist. In addition, the spectral efficiency is lowered by transmitting pilot at every SC-FDE block to estimate channel response. In order to overcome those problems, the proposed structure is devised to estimate frequency domain channel directly without time domain channel estimation. To reduce the pilot overhead, several data blocks are transmitted between two pilots. The channel estimate of each data block is found through linear interpolation of two channel estimates at two pilots. By performing frequency domain channel equalization using this channel estimate, the distortion by the channel is well compensated when narrow band jammers exist. The performance of the proposed structure is confirmed by computer simulation.

A Curve-Fitting Channel Estimation Method for OFDM System in a Time-Varying Frequency-Selective Channel (시변 주파수 선택적 채널에서 OFDM시스템을 위한 Curve-Fitting 채널추정 방법)

  • Oh Seong-Keun;Nam Ki-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.49-58
    • /
    • 2006
  • In this paper, a curve-fitting channel estimation method is proposed for orthogonal frequency division multiplexing (OFDM) system in a time-varying frequency-selective fading channel. The method can greatly improve channel state information (CSI) estimation accuracy by performing smoothing and interpolation through consecutive curve-fitting processes in both time domain and frequency domain. It first evaluates least-squares (LS) estimates using pilot symbols and then the estimates are approximated to a polynomial with proper degree in the LS error sense, starting from one preferred domain in which pilots we densely distributed. Smoothing, interpolation, and prediction are performed subsequently to obtain CSI estimates for data transmission. The channel estimation processes are completed by smoothing and interpolating CSI estimates in the other domain once again using the channel estimates obtained in one domain. The performance of proposed method is influenced heavily on the time variation and frequency selectivity of channel and pilot arrangement. Hence, a proper degree of polynomial and an optimum approximation interval according to various system and channel conditions are required for curve-fitting. From extensive simulation results in various channel environments, we see that the proposed method performs better than the conventional methods including the optimal Wiener filtering method, in terms of the mean square error (MSE) and bit error rate (BER).