• 제목/요약/키워드: Time delay method

검색결과 2,314건 처리시간 0.027초

비선형 시스템의 입/출력 선형화 제어기 설계와 입력 시간-지연 보상 (Controller Synthesis of A Nonlinear System Using Input/Output Linearization and Compensation for Input Time-Delay)

  • 최용호;정길도
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.768-773
    • /
    • 2004
  • This work deals with the synthesis of discrete-time nonlinear controller for input time-delay existing nonlinear system and proposes a new effective method to compensate the influence of input time-delay. The controller is synthesised by using input/output linearization. Under the circumstance that input time-delay exist, controller have to produce future value that will be needed for system. On account of this reason described, a weighted average predictor of combined states is adopted. Using the discretization via Euler method, numerical simulations about Van der Pol system are performed to evaluate performance of the proposed method.

  • PDF

시변 시간지연 함수를 위한 시뮬레이션 객체의 구성 (Configuration of Simulation Object for Time Varying Time Delay Functions)

  • Soon-Man Choi
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권4호
    • /
    • pp.603-610
    • /
    • 2004
  • Time delays are included in most of actual systems, and some of which are shown as time varying. To analyze the time varying time delay system in the time domain. a useful delay module to express the function as a tool is much helpful to get corresponding outputs under given conditions. A method is proposed here to design the algorithm of time delay module for simulation or control purposes, including the problems of initializing and reallocating data in buffer. After classifying the time varying time delay into the distributed mode and lumped mode, an object to describe delay module is configured and tested under the defined input signal and given time delay variation. The simulation results show that the output of module matches reasonably with the case of real system.

A model-based adaptive control method for real-time hybrid simulation

  • Xizhan Ning;Wei Huang;Guoshan Xu;Zhen Wang;Lichang Zheng
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.437-454
    • /
    • 2023
  • Real-time hybrid simulation (RTHS), which has the advantages of a substructure pseudo-dynamic test, is widely used to investigate the rate-dependent mechanical response of structures under earthquake excitation. However, time delay in RTHS can cause inaccurate results and experimental instabilities. Thus, this study proposes a model-based adaptive control strategy using a Kalman filter (KF) to minimize the time delay and improve RTHS stability and accuracy. In this method, the adaptive control strategy consists of three parts-a feedforward controller based on the discrete inverse model of a servohydraulic actuator and physical specimen, a parameter estimator using the KF, and a feedback controller. The KF with the feedforward controller can significantly reduce the variable time delay due to its fast convergence and high sensitivity to the error between the desired displacement and the measured one. The feedback control can remedy the residual time delay and minimize the method's dependence on the inverse model, thereby improving the robustness of the proposed control method. The tracking performance and parametric studies are conducted using the benchmark problem in RTHS. The results reveal that better tracking performance can be obtained, and the KF's initial settings have limited influence on the proposed strategy. Virtual RTHSs are conducted with linear and nonlinear physical substructures, respectively, and the results indicate brilliant tracking performance and superb robustness of the proposed method.

입력지연을 갖는 이산 시간 비선형 시스템의 제어 (Control of Discrete Time Nonlinear Systems with Input Delay)

  • 이성렬
    • 제어로봇시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.509-512
    • /
    • 2012
  • This paper presents the state feedback control design for discrete time nonlinear systems where there exists a time delay in input. It is shown that under some boundedness condition, the time delay nonlinear systems can be transformed into the time delay linear systems with time varying parameters. Sufficient conditions for existence of stabilizing state feedback controller are characterized by linear matrix inequalities. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Real-time hybrid testing using model-based delay compensation

  • Carrion, Juan E.;Spencer, B.F. Jr.
    • Smart Structures and Systems
    • /
    • 제4권6호
    • /
    • pp.809-828
    • /
    • 2008
  • Real-time hybrid testing is an attractive method to evaluate the response of structures under earthquake loads. The method is a variation of the pseudodynamic testing technique in which the experiment is executed in real time, thus allowing investigation of structural systems with time-dependent components. Real-time hybrid testing is challenging because it requires performance of all calculations, application of displacements, and acquisition of measured forces, within a very small increment of time. Furthermore, unless appropriate compensation for time delays and actuator time lag is implemented, stability problems are likely to occur during the experiment. This paper presents an approach for real-time hybrid testing in which time delay/lag compensation is implemented using model-based response prediction. The efficacy of the proposed strategy is verified by conducting substructure real-time hybrid testing of a steel frame under earthquake loads. For the initial set of experiments, a specimen with linear-elastic behavior is used. Experimental results agree well with the analytical solution and show that the proposed approach and testing system are capable of achieving a time-scale expansion factor of one (i.e., real time). Additionally, the proposed method allows accurate testing of structures with larger frequencies than when using conventional time delay compensation methods, thus extending the capabilities of the real-time hybrid testing technique. The method is then used to test a structure with a rate-dependent energy dissipation device, a magnetorheological damper. Results show good agreement with the predicted responses, demonstrating the effectiveness of the method to test rate-dependent components.

전달정렬의 측정치 시간지연 오차보상 기법 (Measurement Time-Delay Error Compensation for Transfer Alignment)

  • 임유철;송기원;유준
    • 제어로봇시스템학회논문지
    • /
    • 제7권11호
    • /
    • pp.953-957
    • /
    • 2001
  • This paper is concerned with a transfer alignment method for the SDINS under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonliner measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

시변지연을 가지는 TS퍼지시스템을 위한 견실 시간종속 안정성판별법 (Robust Delay-dependent Stability Criteria for Takagi-Sugeno Fuzzy Systems with Time-varying Delay)

  • 유아연;이상문;권오민
    • 전기학회논문지
    • /
    • 제64권6호
    • /
    • pp.891-899
    • /
    • 2015
  • This paper presents the robust stability condition of uncertain Takagi-Sugeno(T-S) fuzzy systems with time-varying delay. New augmented Lyapunov-Krasovskii function is constructed to ensure that the system with time-varying delay is globally asymptotically stable. Also, less conservative delay-dependent stability criteria are obtained by employing some integral inequality, reciprocally convex approach and new delay-partitioning method. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed method.

Measurement Time-Delay Error Compensation For Transfer Alignment

  • Lim, You-Chol;Song, Ki-Won;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.486-486
    • /
    • 2000
  • This paper is concerned with a transfer alignment method for the SDINS(StrapDown Inertial Navigation System) under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonlinear measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

비병치 유연계의 시간지연 이산제어 (Time Delay Control of Noncolocated Flexible System in z-Domain)

  • 강민식
    • 대한기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.1089-1098
    • /
    • 1992
  • 본 연구에서는 이산제어 관점에서 비병치제어를 고려한다. 연소시간계에서 많은 장점을 가진 병치제어는 이산시간계로 변환되면 샘플링과 홀딩에서 야기되는 시 간지연 요소때문에 그 특성이 달라진다.따라서 본 논문에서는 연속시간계에서 제안 된 시간지연을 갖는 비병치제어를 이산시간계로 확장하고 제어기 설계 방법을 제시코 저 한다.

도심지의 지체 시간을 고려한 차량 경로 계획에 관한 연구 (Vehicle Routing Problem with Delay Time in the Downtown)

  • 윤태식;김경섭;정석재
    • 한국시뮬레이션학회논문지
    • /
    • 제16권1호
    • /
    • pp.39-47
    • /
    • 2007
  • 도심지내 이동시 지점 간 속도는 시간대와 해당 지점에 따라 차이가 발생한다. 또한 두 지점 사이에는 수많은 신호대기와 병목 구간 등으로 인한 지체가 빈번히 발생한다. 이러한 지체 시간은 차량 경로를 계획함에 있어서 상당히 중요한 요소로 작용한다. 하지만 기존 차량 경로 문제 중 지점 간 이동 거리와 이동 시간에 초점을 맞춘 연구에서 지점 이동시 발생하는 지체에 대해서는 연구가 활발히 진행되지 않았다. 이에 본 연구에서는 지체 시간을 고려한 현실적인 차량 경로 문제에 접근한다. 이를 위해 신호 대기 간 발생하는 지체 시간과 병목 구간에서 발생하는 지체 시간을 추정하는 모델을 제시한다. 추정된 결과를 반영한 최적 차량 경로를 도출하여 지체 시간을 고려하지 않은 경로와 결과를 비교해 봄으로써 본 연구에서 제시하고 있는 방법이 우수하며 효율적임을 제시한다.

  • PDF