• Title/Summary/Keyword: Time Synchronization Error

Search Result 170, Processing Time 0.03 seconds

A Development Of Multi-sensor System For Location Determination Of Fixed-path Movement Attractions (고정경로 이동 어트랙션의 위치 판단을 위한 다중 센서 시스템의 개발)

  • You, Eun-Jae;Jeong, Hwi-Sang;Lee, Hyoun-Sup;Kim, Jin-deog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.709-714
    • /
    • 2018
  • Visual Reality technology is becoming more and more interesting as it attracts people's interest. VR technology is used in various markets such as games, animation, and education. However, there were many people experiencing motion sickness such as dizziness and headache due to the delay time between hardware such as a device for sending a video after experiencing a VR image and an HMD for reproducing an image. The system proposed in this paper focuses on the environment rather than the movement of the attraction and detects the dividing line existing on the path by the proximity sensor and accurately calculates the position on the path according to the user 's motion. Since the position of the user is synchronized with the VR image, the position error of the user is improved to 0.2%.

Precise Indoor Localization System for a Mobile Robot Using Auto Calibration Algorithm (Auto Calibration Algorithm을 이용한 이동 로봇의 정밀 위치추정 시스템)

  • Kim, Sung-Bu;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.40-47
    • /
    • 2007
  • Recently, with the development of service robots and with the new concept of ubiquitous world, the position estimation of mobile objects has been raised to an important problem. As pre-liminary research results, some of the localization schemes are introduced, which provide the absolute location of the moving objects subjected to large errors. To implement a precise and convenient localization system, a new absolute position estimation method for a mobile robot in indoor environment is proposed in this paper. Design and implementation of the localization system comes from the usage of active beacon systems (based upon RFID technology). The active beacon system is composed of an RFID receiver and an ultra-sonic transmitter: 1. The RFID receiver gets the synchronization signal from the mobile robot and 2. The ultra-sonic transmitter sends out the traveling signal to be used for measuring the distance. Position of a mobile robot in a three dimensional space can be calculated basically from the distance information from three beacons and the absolute position information of the beacons themselves. Since it is not easy to install the beacons at a specific position precisely, there exists a large localization error and the installation time takes long. To overcome these problems, and provide a precise and convenient localization system, a new auto calibration algorithm is developed in this paper. Also the extended Kalman filter has been adopted for improving the localization accuracy during the mobile robot navigation. The localization accuracy improvement through the proposed auto calibration algorithm and the extended Kalman filter has been demonstrated by the real experiments.

  • PDF

Performance Evaluation for Speed of Mobile Devices in UFMC Systems (UFMC 시스템에서 모바일 장치의 이동속도에 대한 성능평가)

  • Lee, Kyuseop;Choi, Ginkyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.53-58
    • /
    • 2017
  • UFMC is known as the one among novel multi-carrier modulation techniques which are designed for replacing OFDM for 5G wireless communication systems. It is the generalized model of OFDM and FBMC, which combines the advantages of OFDM and FBMC and avoids their weak points. UFMC is more robust in synchronization condition like Time-frequency misalignment compared to CP-OFDM. Moreover UFMC is more proper to burst uplink transmission like M2M 5G Communications. In this paper we analyze the BER performance in various channels and speeds. The simulation result shows that the BER performance is lowered when mobile devices are moving fast and the BER performance is so sensitive for the good channel environment.

Development of Integrated eLoran/GNSS Receiver and Performance Test Result (eLoran/GNSS 통합 수신기 개발 및 성능시험 결과)

  • Kim, Jeong-been;Yu, Je Hyun;Park, Il Kyu;Son, Seok Bo;Kim, Young-Baek
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.73-74
    • /
    • 2019
  • We are developing a receiver that integrates eLoran and GNSS for navigation. The receiver shows similar performance to LORADD receiver in single navigation using Loran-C. In the case of GNSS navigation, the receiver uses GPS and GLONASS or GPS and BDS, so it has better navigation performance than the LORADD receiver using only GPS. Therefore, it is possible to expect better performance than the LORADD receiver in the integrated navigation which can complete the time synchronization between the chains later and obtaion the TOA. Loran data channel decoding function is implemented for eLoran navigation and the function of eliminating error factors such as interference is being implemented.

  • PDF

Positioning using ZigBee and Ultrasound

  • Park, Chan-Sik;Kim, Seung-Beom;Kang, Dong-Youn;Yun, Hee-Hak;Cha, En-Jong;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.217-222
    • /
    • 2006
  • To find a location, GPS has been wildly used. But, it is hard to use in indoor because of very weak signal level. To meet indoor requirements, there have been many studies applying wireless communication networks such as WLAN, UWB and ZigBee. Among these, ZigBee is widely adopted in many WSN applications because it has an advantage of low-power and low-cost. In ZigBee, the RSSI is used as range measurement for ad-hoc network. The RSSI are converted to ranges using the signal attenuation model and these ranges become inputs of positioning methods. The obtained position with RSSI has large error because of its poor accuracy. To overcome this problem, ultrasonic sensors are added in many researches. By measuring the arrival time difference of ZigBee and ultrasound as a range measurement, the precise position can be found. However, there are still many problems: scheduling of beacons to transmit signals in a correct order, addition and synchronization of beacons and low-rate positioning rate. At this paper, an efficient method to solve these problems is proposed. In the proposed method, a node transmits ZigBee and ultrasound signal simultaneously. And beacons find the range with the received signals and send it back to a node with ZigBee. The position is computed in a node with the received ranges. In addition, a new positioning algorithm to solve the risk of the divergence in the linearization method and the singularity problem in the Savarese method is presented. Both static and dynamic experimental results show 0.02m RMS errors with high output rate.

  • PDF

Inland ASF Measurement by Signal of the 9930M Station (9930M국 로란-C 신호를 이용한 내륙 ASF 측정 연구)

  • Yang, Sung-Hoon;Lee, Chang-Bok;Lee, Jong-Koo;Kim, Young-Jae;Lee, Sang-Jeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.8
    • /
    • pp.603-607
    • /
    • 2010
  • The LORAN system had been used widely and it was an essential navigation aid for ships in the ocean until the GPS is adopted actively. In particular, it was essential functionality for the ships to sail the oceans. According to the advancement of industry, however, the current accuracy of traditional Loran is insufficient for the utilization of harbour approach, land navigation, and the field of survey and timing. Therefore it is necessary that the study on the improvement of the positioning accuracy of Loran. The one of the improving methods is to measure and compensate the propagation time delay between the transmitter and user's receiver, which is called as additional secondary factor (ASF). In this study, we measured the ASF between the Pohang master transmitting station (9930M) and four points where locate within 33 km apart from the transmitting station, using the measuring technique of the absolute time delay without a time of coincidence (TOC) table. As the result of measurement, the ranging error caused by the propagation delay was about 210 m at 33 km, however it can be reduced up to 40 m with ASF compensation.

A development of DS/CDMA MODEM architecture and its implementation (DS/CDMA 모뎀 구조와 ASIC Chip Set 개발)

  • 김제우;박종현;김석중;심복태;이홍직
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1210-1230
    • /
    • 1997
  • In this paper, we suggest an architecture of DS/CDMA tranceiver composed of one pilot channel used as reference and multiple traffic channels. The pilot channel-an unmodulated PN code-is used as the reference signal for synchronization of PN code and data demondulation. The coherent demodulation architecture is also exploited for the reverse link as well as for the forward link. Here are the characteristics of the suggested DS/CDMA system. First, we suggest an interlaced quadrature spreading(IQS) method. In this method, the PN coe for I-phase 1st channel is used for Q-phase 2nd channels and the PN code for Q-phase 1st channel is used for I-phase 2nd channel, and so on-which is quite different from the eisting spreading schemes of DS/CDMA systems, such as IS-95 digital CDMA cellular or W-CDMA for PCS. By doing IQS spreading, we can drastically reduce the zero crossing rate of the RF signals. Second, we introduce an adaptive threshold setting for the synchronization of PN code, an initial acquistion method that uses a single PN code generator and reduces the acquistion time by a half compared the existing ones, and exploit the state machines to reduce the reacquistion time Third, various kinds of functions, such as automatic frequency control(AFC), automatic level control(ALC), bit-error-rate(BER) estimator, and spectral shaping for reducing the adjacent channel interference, are introduced to improve the system performance. Fourth, we designed and implemented the DS/CDMA MODEM to be used for variable transmission rate applications-from 16Kbps to 1.024Mbps. We developed and confirmed the DS/CDMA MODEM architecture through mathematical analysis and various kind of simulations. The ASIC design was done using VHDL coding and synthesis. To cope with several different kinds of applications, we developed transmitter and receiver ASICs separately. While a single transmitter or receiver ASC contains three channels (one for the pilot and the others for the traffic channels), by combining several transmitter ASICs, we can expand the number of channels up to 64. The ASICs are now under use for implementing a line-of-sight (LOS) radio equipment.

  • PDF

A Technical Guide to Operational Regional Ocean Forecasting Systems in the Korea Hydrographic and Oceanographic Agency (I): Continuous Operation Strategy, Downloading External Data, and Error Notification (국립해양조사원 해양예측시스템 소개 (I): 현업 운영 전략, 외부 해양·기상 자료 내려 받기 및 오류 알림 기능)

  • BYUN, DO-SEONG;SEO, GWANG-HO;PARK, SE-YOUNG;JEONG, KWANG-YEONG;LEE, JOO YOUNG;CHOI, WON-JIN;SHIN, JAE-AM;CHOI, BYOUNG-JU
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.103-117
    • /
    • 2017
  • This note provides technical guide on three issues associated with establishing and automatically running regional ocean forecasting systems: (1) a strategy for continuous production of hourly-interval three-day ocean forecast data, (2) the daily download of ocean and atmospheric forecasting data (i.e., HYCOM and NOAA/NCEP GFS data), which are provided by outside institutions and used as initial condition, surface forcing, and boundary data for regional ocean models, and (3) error notifications to numerical model managers through the Short Message Service (SMS). Guidance on dealing with these three issues is illustrated via solutions implemented by the Korea Hydrographic and Oceanographic Agency, since in embarking on this project we found that this procedural information was not readily available elsewhere. This technical guide is based on our experiences and lessons learned during the process of establishing and operating regional ocean forecasting systems for the East Sea and the Yellow and East China Seas over the 5 year period of 2012-2016. The fundamental approach and techniques outlined in this guide are of use to anyone wanting to establish an automatic regional and coastal ocean forecasting system.

An accuracy analysis of Cyberknife tumor tracking radiotherapy according to unpredictable change of respiration (예측 불가능한 호흡 변화에 따른 사이버나이프 종양 추적 방사선 치료의 정확도 분석)

  • Seo, jung min;Lee, chang yeol;Huh, hyun do;Kim, wan sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.157-166
    • /
    • 2015
  • Purpose : Cyber-Knife tumor tracking system, based on the correlation relationship between the position of a tumor which moves in response to the real time respiratory cycle signal and respiration was obtained by the LED marker attached to the outside of the patient, the location of the tumor to predict in advance, the movement of the tumor in synchronization with the therapeutic device to track real-time tumor, is a system for treating. The purpose of this study, in the cyber knife tumor tracking radiation therapy, trying to evaluate the accuracy of tumor tracking radiation therapy system due to the change in the form of unpredictable sudden breathing due to cough and sleep. Materials and Methods : Breathing Log files that were used in the study, based on the Respiratory gating radiotherapy and Cyber-knife tracking radiosurgery breathing Log files of patients who received herein, measured using the Log files in the form of a Sinusoidal pattern and Sudden change pattern. it has been reconstituted as possible. Enter the reconstructed respiratory Log file cyber knife dynamic chest Phantom, so that it is possible to implement a motion due to respiration, add manufacturing the driving apparatus of the existing dynamic chest Phantom, Phantom the form of respiration we have developed a program that can be applied to. Movement of the phantom inside the target (Ball cube target) was driven by the displacement of three sizes of according to the size of the respiratory vertical (Superior-Inferior) direction to the 5 mm, 10 mm, 20 mm. Insert crosses two EBT3 films in phantom inside the target in response to changes in the target movement, the End-to-End (E2E) test provided in Cyber-Knife manufacturer depending on the form of the breathing five times each. It was determined by carrying. Accuracy of tumor tracking system is indicated by the target error by analyzing the inserted film, additional E2E test is analyzed by measuring the correlation error while being advanced. Results : If the target error is a sine curve breathing form, the size of the target of the movement is in response to the 5 mm, 10 mm, 20 mm, respectively, of the average $1.14{\pm}0.13mm$, $1.05{\pm}0.20mm$, with $2.37{\pm}0.17mm$, suddenly for it is variations in breathing, respective average $1.87{\pm}0.19mm$, $2.15{\pm}0.21mm$, and analyzed with $2.44{\pm}0.26mm$. If the correlation error can be defined by the length of the displacement vector in the target track is a sinusoidal breathing mode, the size of the target of the movement in response to 5 mm, 10 mm, 20 mm, respective average $0.84{\pm}0.01mm$, $0.70{\pm}0.13mm$, with $1.63{\pm}0.10mm$, if it is a variant of sudden breathing respective average $0.97{\pm}0.06mm$, $1.44{\pm}0.11mm$, and analyzed with $1.98{\pm}0.10mm$. The larger the correlation error values in both the both the respiratory form, the target error value is large. If the motion size of the target of the sine curve breathing form is greater than or equal to 20 mm, was measured at 1.5 mm or more is a recommendation value of both cyber knife manufacturer of both error value. Conclusion : There is a tendency that the correlation error value between about target error value magnitude of the target motion is large is increased, the error value becomes large in variation of rapid respiration than breathing the form of a sine curve. The more the shape of the breathing large movements regular shape of sine curves target accuracy of the tumor tracking system can be judged to be reduced. Using the algorithm of Cyber-Knife tumor tracking system, when there is a change in the sudden unpredictable respiratory due patient coughing during treatment enforcement is to stop the treatment, it is assumed to carry out the internal target validation process again, it is necessary to readjust the form of respiration. Patients under treatment is determined to be able to improve the treatment of accuracy to induce the observed form of regular breathing and put like to see the goggles monitor capable of the respiratory form of the person.

  • PDF

Capacity Comparison of Two Uplink OFDMA Systems Considering Synchronization Error among Multiple Users and Nonlinear Distortion of Amplifiers (사용자간 동기오차와 증폭기의 비선형 왜곡을 동시에 고려한 두 상향링크 OFDMA 기법의 채널용량 비교 분석)

  • Lee, Jin-Hui;Kim, Bong-Seok;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.258-270
    • /
    • 2014
  • In this paper, we investigate channel capacity of two kinds of uplink OFDMA (Orthogonal Frequency Division Multiple Access) schemes, i.e. ZCZ (Zero Correlation Zone) code time-spread OFDMA and sparse SC-FDMA (Single Carrier Frequency Division Mmultiple Access) robust to access timing offset (TO) among multiple users. In order to reflect the practical condition, we consider not only access TO among multiple users but also peak to average power ratio (PAPR) which is one of hot issues of uplink OFDMA. In the case with access TO among multiple users, the amplified signal of users by power control might affect a severe interference to signals of other users. Meanwhile, amplified signal by considering distance between user and base station might be distorted due to the limit of amplifier and thus the performance might degrade. In order to achieve the maximum channel capacity, we investigate the combinations of transmit power so called ASF (adaptive scaling factor) by numerical simulations. We check that the channel capacity of the case with ASF increases compared to the case with considering only distance i.e. ASF=1. From the simulation results, In the case of high signal to noise ratio (SNR), ZCZ code time-spread OFDMA achieves higher channel capacity compared to sparse block SC-FDMA. On the other hand, in the case of low SNR, the sparse block SC-FDMA achieves better performance compared to ZCZ time-spread OFDMA.