• 제목/요약/키워드: Time Series Network Analysis

검색결과 283건 처리시간 0.029초

Efficient Anomaly Detection Through Confidence Interval Estimation Based on Time Series Analysis

  • Kim, Yeong-Ju;Jeong, Min-A
    • International journal of advanced smart convergence
    • /
    • 제4권2호
    • /
    • pp.46-53
    • /
    • 2015
  • This paper suggests a method of real time confidence interval estimation to detect abnormal states of sensor data. For real time confidence interval estimation, the mean square errors of the exponential smoothing method and moving average method, two of the time series analysis method, were compared, and the moving average method with less errors was applied. When the sensor data passes the bounds of the confidence interval estimation, the administrator is notified through alarms. As the suggested method is for real time anomaly detection in a ship, an Android terminal was adopted for better communication between the wireless sensor network and users. For safe navigation, an administrator can make decisions promptly and accurately upon emergency situation in a ship by referring to the anomaly detection information through real time confidence interval estimation.

지수평활법을 외생변수로 사용하는 자기회귀 신경망 모형 (Neural network AR model with ETS inputs)

  • 김민재;성병찬
    • 응용통계연구
    • /
    • 제37권3호
    • /
    • pp.297-309
    • /
    • 2024
  • 본 논문에서는 자기회귀 신경망 모형과 지수평활법을 결합(NNARX+ETS 모형)하고 그 성능을 평가한다. 제안된 결합 모형은 시계열 자료를 예측하기 위하여 NNARX 모형의 외생변수로서 ETS 모형의 구성 성분을 활용한다. 이 모형의 주요 아이디어는, 신경망 모형이 원시계열 자료의 과거 시차만을 고려하는 것을 한계를 넘어서서 전통적 시계열 예측 방법인 지수평활법에 의해서 추출된 정제된 시계열 구성 성분까지도 추가로 신경망 모형의 입력값으로 사용하는 것이다. 예측 성능 평가는 2가지 실제 시계열 자료를 사용하였으며 제안된 모형을 NNAR 모형 및 전통적 시계열 분석 방법인 ETS와 ARIMA 모형과 비교하였다.

A Proposal of Sensor-based Time Series Classification Model using Explainable Convolutional Neural Network

  • Jang, Youngjun;Kim, Jiho;Lee, Hongchul
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.55-67
    • /
    • 2022
  • 센서 데이터를 활용하여 설비의 이상 진단이 가능해졌다. 하지만 설비 이상에 대한 원인 분석은 미비한 실정이다. 본 연구에서는 센서 기반 시계열 데이터 분류 모델을 위한 해석가능한 합성곱 신경망 프레임워크를 제안한다. 연구에서 사용된 센서 기반 시계열 데이터는 실제 차량에 부착된 센서를 통해 수집되었고, 반도체의 웨이퍼 데이터는 공정 과정에서 수집되었다. 추가로 실제 기계 설비에서 수집된 주기 신호 데이터를 이용 하였으며, 충분한 학습을 위해 Data augmentation 방법론인 Scaling과 Jittering을 적용하였다. 또한, 본 연구에서는 3가지 합성곱 신경망 기반 모델들을 제안하고 각각의 성능을 비교하였다. 본 연구에서는 ResNet에 Jittering을 적용한 결과 정확도 95%, F1 점수 95%로 가장 뛰어난 성능을 보였으며, 기존 연구 대비 3%의 성능 향상을 보였다. 더 나아가 결과의 해석을 위한 XAI 방법론으로 Class Activation Map과 Layer Visualization을 제안하였으며, 센서 데이터 분류에 중요 영향을 끼치는 시계열 구간을 시각적으로 확인하였다.

A Visualization System for Multiple Heterogeneous Network Security Data and Fusion Analysis

  • Zhang, Sheng;Shi, Ronghua;Zhao, Jue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권6호
    • /
    • pp.2801-2816
    • /
    • 2016
  • Owing to their low scalability, weak support on big data, insufficient data collaborative analysis and inadequate situational awareness, the traditional methods fail to meet the needs of the security data analysis. This paper proposes visualization methods to fuse the multi-source security data and grasp the network situation. Firstly, data sources are classified at their collection positions, with the objects of security data taken from three different layers. Secondly, the Heatmap is adopted to show host status; the Treemap is used to visualize Netflow logs; and the radial Node-link diagram is employed to express IPS logs. Finally, the Labeled Treemap is invented to make a fusion at data-level and the Time-series features are extracted to fuse data at feature-level. The comparative analyses with the prize-winning works prove this method enjoying substantial advantages for network analysts to facilitate data feature fusion, better understand network security situation with a unified, convenient and accurate mode.

텍스트마이닝을 이용한 정보보호 연구동향 분석 (Research Trends Analysis of Information Security using Text Mining)

  • 김태경;김창식
    • 디지털산업정보학회논문지
    • /
    • 제14권2호
    • /
    • pp.19-25
    • /
    • 2018
  • With the development of IT technology, various services such as artificial intelligence and autonomous vehicles are being introduced, and many changes are taking place in our lives. However, if secure security is not provided, it will cause many risks, so the information security becomes more important. In this paper, we analyzed the research trends of main themes of information security over time. In order to conduct the research, 'Information Security' was searched in the Web of Science database. Using the abstracts of theses published from 1991 to 2016, we derived main research topics through topic modeling and time series regression analysis. The topic modeling results showed that the research topics were Information technology, system access, attack, threat, risk management, network type, security management, security awareness, certification level, information protection organization, security policy, access control, personal information, security investment, computing environment, investment cost, system structure, authentication method, user behavior, encryption. The time series regression results indicated that all the topics were hot topics.

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taek-Soo;Han, In-Goo
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support for multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To data, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

Times Series Analysis of GPS Receiver Clock Errors to Improve the Absolute Positioning Accuracy

  • Bae, Tae-Suk;Kwon, Jay-Hyoun
    • 한국측량학회지
    • /
    • 제25권6_1호
    • /
    • pp.537-543
    • /
    • 2007
  • Since the GPS absolute positioning with pseudorange measurements can significantly be affected by the observation error, the time series analysis of the GPS receiver clock errors was performed in this study. From the estimated receiver clock errors, the time series model is generated, and constrained back in the absolute positioning process. One of the CORS (Continuously Operating Reference Stations) network is used to analyze the behavior of the receiver clock. The dominant part of the model is the linear trend during 24 hours, and the seasonal component is also estimated. After constraining the modeled receiver clock errors, the estimated position error compared to the published coordinates is improved from ${\pm}11.4\;m\;to\;{\pm}9.5\;m$ in 3D RMS.

다학제 분야 학술지의 주제어 동시발생 네트워크를 활용한 기술예측 연구 (A Study on Technology Forecasting based on Co-occurrence Network of Keyword in Multidisciplinary Journals)

  • 김현욱;안상진;정우성
    • 한국경영과학회지
    • /
    • 제40권4호
    • /
    • pp.49-63
    • /
    • 2015
  • Keyword indexed in multidisciplinary journals show trends about science and technology innovation. Nature and Science were selected as multidisciplinary journals for our analysis. In order to reduce the effect of plurality of keyword, stemming algorithm were implemented. After this process, we fitted growth curve of keyword (stem) following bass model, which is a well-known model in diffusion process. Bass model is useful for expressing growth pattern by assuming innovative and imitative activities in innovation spreading. In addition, we construct keyword co-occurrence network and calculate network measures such as centrality indices and local clustering coefficient. Based on network metrics and yearly frequency of keyword, time series analysis was conducted for obtaining statistical causality between these measures. For some cases, local clustering coefficient seems to Granger-cause yearly frequency of keyword. We expect that local clustering coefficient could be a supportive indicator of emerging science and technology.

빅데이터 연구동향 분석: 토픽 모델링을 중심으로 (Research Trends Analysis of Big Data: Focused on the Topic Modeling)

  • 박종순;김창식
    • 디지털산업정보학회논문지
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 2019
  • The objective of this study is to examine the trends in big data. Research abstracts were extracted from 4,019 articles, published between 1995 and 2018, on Web of Science and were analyzed using topic modeling and time series analysis. The 20 single-term topics that appeared most frequently were as follows: model, technology, algorithm, problem, performance, network, framework, analytics, management, process, value, user, knowledge, dataset, resource, service, cloud, storage, business, and health. The 20 multi-term topics were as follows: sense technology architecture (T10), decision system (T18), classification algorithm (T03), data analytics (T17), system performance (T09), data science (T06), distribution method (T20), service dataset (T19), network communication (T05), customer & business (T16), cloud computing (T02), health care (T14), smart city (T11), patient & disease (T04), privacy & security (T08), research design (T01), social media (T12), student & education (T13), energy consumption (T07), supply chain management (T15). The time series data indicated that the 40 single-term topics and multi-term topics were hot topics. This study provides suggestions for future research.

시계열 데이터의 성격과 예측 모델의 예측력에 관한 연구 (Relationships Between the Characteristics of the Business Data Set and Forecasting Accuracy of Prediction models)

  • 이원하;최종욱
    • 지능정보연구
    • /
    • 제4권1호
    • /
    • pp.133-147
    • /
    • 1998
  • Recently, many researchers have been involved in finding deterministic equations which can accurately predict future event, based on chaotic theory, or fractal theory. The theory says that some events which seem very random but internally deterministic can be accurately predicted by fractal equations. In contrast to the conventional methods, such as AR model, MA, model, or ARIMA model, the fractal equation attempts to discover a deterministic order inherent in time series data set. In discovering deterministic order, researchers have found that neural networks are much more effective than the conventional statistical models. Even though prediction accuracy of the network can be different depending on the topological structure and modification of the algorithms, many researchers asserted that the neural network systems outperforms other systems, because of non-linear behaviour of the network models, mechanisms of massive parallel processing, generalization capability based on adaptive learning. However, recent survey shows that prediction accuracy of the forecasting models can be determined by the model structure and data structures. In the experiments based on actual economic data sets, it was found that the prediction accuracy of the neural network model is similar to the performance level of the conventional forecasting model. Especially, for the data set which is deterministically chaotic, the AR model, a conventional statistical model, was not significantly different from the MLP model, a neural network model. This result shows that the forecasting model. This result shows that the forecasting model a, pp.opriate to a prediction task should be selected based on characteristics of the time series data set. Analysis of the characteristics of the data set was performed by fractal analysis, measurement of Hurst index, and measurement of Lyapunov exponents. As a conclusion, a significant difference was not found in forecasting future events for the time series data which is deterministically chaotic, between a conventional forecasting model and a typical neural network model.

  • PDF